MECHANICAL PROPERTIES OF FLUIDS

1.	A body floats in a liquid contained in a beaker. If the whole system falls under gravity, them the upthrust
	on the body due to liquids is

- a) equal to the weight of the body in air
- b) equal to the weight of the body in liquid
- d) equal to the weight of the immersed part of the body
- 2. The working of venturimeter is based on
 - a) Torricelli's law

b) Pascal's law

c) Bernoulli's theorem

d) Archimede's principle

- A rain drop of radius 1.5 mm, experiences a drag force $F = (2 \times 10^{-5} v)$ N, while falling through air from a height 2 km, with a velocity v. The terminal velocity of the rain drop will be nearly (use $g = 10 \text{ ms}^{-2}$)
 - a) 200 ms^{-1}
- b) 80 ms^{-1}
- c) 7 ms^{-1}
- d) 3 ms^{-1}
- A weightless bag is filled with 5 kg of water and then weighed in water. The reading of spring balance is
 - a) 5 kgf
- b) 2.5 kgf
- c) 1.25 kgf
- d) Zero
- 5. A rain drop of radius 0.3 mm has a terminal velocity in air = 1 ms^{-1} . The viscous force on it is
 - a) 101.73×10^{-4} dyne
- b) 101.73×10^{-5} dyne c) 16.95×10^{-4} dyne
- d) 16.95×10^{-5} dyne
- A rectangular vessel when full of water, takes 10 min to be emptied through an orifice in its bottom. How much time will take to be emptied when half filled with water?
 - a) 9 min
- b) 7 min
- c) 5 min
- d) 3 min
- A liquid is kept in a cylindrical vessel which is rotated along its axis. The liquid rises at the sides (figure). If the radius of the vessel is 0.05 m and the sped of rotation is 2 rad s⁻¹, find the difference in the height of the liquid at the centre of the vessel and its sides

- a) 20 cm
- b) 4 cm
- c) 2 cm
- d) 0.2 cm
- Figure shows the vertical cross section of a vessel filled with a liquid of density ρ . The normal thrust per unit area on the walls of the vessel at point P, as shown will be

- a) $h \rho g$
- b) $H \rho g$
- c) $(H-h)\rho$ g
- d) $(H h)\rho g \cos \theta$

9.	The density ρ of water of the relation	f bulk modulus B at a depth	y in the ocean is related to	the density at surface $ ho_0$ by
	a) $\rho = \rho_0 \left[1 - \frac{\rho_0 g y}{B} \right]$	b) $\rho = \rho_0 \left[1 + \frac{\rho_0 g y}{B} \right]$	c) $\rho = \rho_0 \left[1 + \frac{B}{\rho_0 h g y} \right]$	$d) \rho = \rho_0 \left[1 - \frac{B}{\rho_0 g y} \right]$
10.	A large ship can float but	a steel needle sinks becaus	se of	
	a) Viscosity	b) Surface tension	c) Density	d) None of these
11.	A small spherical solid ba	all is dropped from a great	height in a viscous liquid. It	s journey in the liquid is
		Velocity (v)	A B C C D	
	best described in the dia	gram given below by the	Time (t)	
	a) Curve A	b) Curve B	c) Curve C	d) Curve D
12.	(77)	g 22 g exactly are taken. On m ^{–3}). They are immersed ir	- 7	T0

b) Iron cube weighs more

- d) The liquid flows with uniform velocity in the tube 14. An ice block contains a glass ball when the ice melts within the water containing vessel, the level of water a) Rises b) Falls
- c) Unchanged d) First rises and then falls 15. An ice berg of density 900 kg/m^3 is floating in water of density 1000 kg/m^3 . The percentage of volume of ice-cube outside the water is
- a) 20% b) 35% c) 10% d) 25% 16. A small spherical ball falling through a viscous medium of negligible density has terminal velocity v. Another ball of the same mass but of radius twice that of the earlier falling through the same viscous medium will have terminal velocity
- 17. The relative velocity of two consecutive layers is 8 cm/s. If the perpendicular distance between the layers is 0.1 cm, then the velocity gradient will be
- b) $80 \, sec^{-1}$ c) $0.8 \, sec^{-1}$ d) $0.08 \, sec^{-1}$
- 18. A block of aluminium of mass 1 kg and volume $3.6 \times 10^{-4} m^3$ is suspended from a string and then completely immersed in a container of water. The decrease in tension in the string after immersion is b) 6.2 N c) 3.6 Nd) 1.0 N
- 19. A wooden lock is taken to the bottom of a deep calm lake of water and then released. It rises up with a
- a) constant acceleration b) decreasing acceleration
- c) constant velocity d) decreasing velocity 20. If the work done in blowing a bubble of volume V is W, then the work done in blowing a soap bubble of
- volume 2V will be a) W b) 2W c) $\sqrt{2}$ W d) $4^{1/3}W$
- 21. Two communicating vessels contain mercury. The diameter of one vessel is n times larger than the diameter of the other. A column of water of height h is poured into the left vessel. The mercury level will

a) Iron cube weighs less

rise in the right-hand vessel (s = relative density of mercury and $\rho =$ density of water) by

- c) $\frac{h}{(n+1)^2s}$
- 22. A ball of radius r and density ρ falls freely under gravity through a distance h before entering water. Velocity of ball does not change even on entering wate r. If viscosity of water is η , the value of h is given by

- a) $\frac{2}{9}r^2\left(\frac{1-\rho}{\eta}\right)g$
- $\mathrm{b)} \frac{2}{81} r^2 \left(\frac{\rho-1}{\eta}\right) g \qquad \qquad \mathrm{c)} \frac{2}{81} r^4 \left(\frac{\rho-1}{\eta}\right)^2 g \qquad \qquad \mathrm{d)} \frac{2}{9} r^4 \left(\frac{\rho-1}{\eta}\right)^2 g$
- 23. A solid of density *D* is floating in a liquid of density *d*. If *v* is the volume of solid submerged in the liquid and V is the total volume of the solid, then v/V is equal to
 - a) $\frac{d}{P}$

- d) $\frac{D+d}{D}$
- 24. A liquid flows in a tube from left to right as shown in figure A_1 and A_2 are the cross-sections of the

portions of the tube as shown. Then the ratio of speeds v_1/v_2 will be

- a) A_1/A_2
- b) A_2/A_1
- c) $\sqrt{A_2}/\sqrt{A_1}$
- d) $\sqrt{A_1}/\sqrt{A_2}$
- 25. From a steel wire of density ρ is suspended a brass block of density ρ_B . The extension of steel wire comes to l. If the brass block is now fully immersed in a liquid of density ρ_L , the extension becomes l'. The ratio
 - a) $\frac{\rho_B \rho}{\rho_L \rho}$
- c) $\frac{\rho_B \rho_L}{\rho_B}$
- 26. The excess pressure inside a spherical drop of radius r of a liquid of surface tension T is
 - a) Directly proportional to r and inversely proportional to T
 - b) Directly proportional to T and inversely proportional to r
 - c) Directly proportional to the product of T and r
 - d) Inversely proportional to the product of T and r
- 27. A siphon in use is demonstrated in the following figure. The density of the liquid flowing in siphon is 1.5 gm/cc. The pressure difference between the point P and S will be

- a) $10^5 N/m$
- b) $2 \times 10^5 N/m$
- c) Zero
- d) Infinity
- 28. A hole in the bottom of the tank having water. If total pressure at bottom is 3 atm (1 atm = 10^5 Nm⁻²), then velocity of water flowing from hole is

	a) $\sqrt{400} \text{ ms}^{-1}$	b) $\sqrt{600} \text{ ms}^{-1}$	c) $\sqrt{60} \text{ ms}^{-1}$	d) None of these
29.	A large tank filled with w	rater to a height h is to be e	mptied through a small ho	le at the bottom. The ratio o
	times taken for the level		h to $h/2$ and $h/2$ to zer	
	a) $\sqrt{2}$	b) $\frac{1}{\sqrt{2}}$	c) $\sqrt{2} - 1$	d) ———
0.2820		• –		
30.		$m \times 5 \ cm \times 5 \ cm$ is weigh	ed in water. If the relative o	density of steel is 7, its
	apparent weight is	13.44476		N. 4 4
2.1			c) $5 \times 5 \times 5 \times 7 gf$	
31.			es of a wide rectangular ta	
				he tank is filled with water
	a) 100	density of water= 1000 kg b) 200	c) 300	d) 400
32		25.00 PM PM PM PM	ms ⁻¹ . The shearing stress	200 min 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
34.			of viscosity of water= 10^{-3}	
			c) $1 \times 10^{-3} \text{ Nm}^{-2}$	
33.		127.0		ng miscible liquid of specifi
001	gravity 1.2. When ice mel	Berger (1972) Francis Brander (1974) and the second of the	and in a bounce b contains	ng miserore nquiu or speem
	a) water increases in A	00 5. 22 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b) water decreases in A	
	c) liquid in B decreases		d) liquid in B increases	
34.		id in equilibrium, molecule	(5) 5	
	a) maximum potential en	ergy	b) maximum potential er	nergy
	c) maximum kinetic ener		d) minimum kinetic ener	0.
35.				of forms a tapering column,
		12	reases as it moves down. W	hich of the following is the
	most accurate explanatio	n for this?		
	-\frac{1}{7}			
	- 1 1. 프라마스 (Carlottan Carlottan) 및 다른 아이트 (Carlottan Carlottan Carlottan Carlottan Carlottan Carlottan Car	popul popular and a come and the armination in the property of the contract of the contract of the contract of	d hence, reduces the area o	of cross-section to balance
	upward and downwar		22 3	5 % 2 2
		wn, its speed increases an	d hence, its pressure decre	ases. It is then compressed
	by atmosphere	.1 1 6	Cal 1: 11. 1	
	374		rea of the liquid to decreas	
		2000년 1월 1일	h any cross-section must ro water flowing out per seco	
		city × area, the area decrea		niu must remain constant.
36		-	10^{-1} . Then the speed of 1 cr	n radius hall in the same
50.	liquid is	in a viscous iiquiu is 20 cii	is . Then the speed of 1 ci	ii radius baii iii die saine
	a) 5 cms ⁻¹	b) 10 cms ⁻¹	c) 40 cms ⁻¹	d) 80 cms^{-1}
37.			- 1875 - 1875 - 1875 - 1875 - 1875 - 1875 - 1875 - 1875 - 1875 - 1875 - 1875 - 1875 - 1875 - 1875 - 1875 - 1875	of a liquid of density d will
	be	,		
	a) $\frac{d_0}{d}$	b) $\frac{dd_0}{d+d_0}$	c) $\frac{d-d_0}{d}$	d) $\frac{dd_0}{d-d_0}$
	$\frac{d}{d}$	$\frac{d}{d+d_0}$	$\frac{c_0}{d}$	$\frac{d}{d-d_0}$
38.	A piece of ice is floating in		hen the ice melts, then the	level of water
	a) rises	b) Falls	c) remains unchanged	d) rises or falls
39.	- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	and because the comment of the contract of the beautiful and	o the bottom of a bowl. Wh	en the bowl is kept in an
	135	eleration downwards, the	2.0	D.M. Cal
	a) Increases	b) Decreases	c) Remains unchanged	d) None of these

- 40. A body of density d_1 is counterpoised by Mg of weights of density d_2 in air of density d. Then the true mass of the body is

- b) $M\left(1-\frac{d}{d_2}\right)$ c) $M\left(1-\frac{d}{d_1}\right)$
- d) $\frac{M(1-d/d_2)}{(1-d/d_1)}$
- 41. Water rises in a capillary tube to a height h. Choose false statement regarding capillary rise from the following.
 - a) On the surface of Jupiter, height will be less than h
 - b) In a lift moving up with constant acceleration height is less than h
 - c) On the surface of moon the height is more than h
 - d) In a lift moving down with constant acceleration height is less than h
- 42. Water is in streamline flow along a horizontal pipe with nonuniform cross-section. At a point in the pipe where the area of cross-section is 10 cm^2 , the velocity of water is 1 ms^{-1} and the pressure is 2000 Pa. The pressure at another point where the cross-sectional area is $5 cm^2$ is
 - a) 4000 Pa
- b) 2000 Pa
- c) 1000 Pa
- d) 500 Pa
- 43. An iron sphere of mass 20×10^{-3} kg falls through a viscous liquid with terminal velocity 0.5 ms^{-1} . The terminal velocity (in $\text{ms}^{-1})$ of another iron sphere of mass $54\times 10^{-2}~\text{kg}$ is
 - a) 4.5

- 44. The diagram shows a cup of tea seen from above. The tea has been stirred and is now rotating without turbulence. A graph showing the speed v with which the liquid is crossing points at a distance X from O along a radius XO would look like

45. In the following fig. is shown the flow of liquid through a horizontal pipe. Three tubes A, B and C are connected to the pipe. The radii of the tubes A, B and C at the junction are respectively 2 cm, 1 cm and

2 cm. It can be said that the

- a) Height of the liquid in the tube A is maximum
- b) Height of the liquid in the tubes A and B is the same
- c) Height of the liquid in all the three tubes is the same
- d) Height of the liquid in the tubes A and C is the same
- 46. If the length of tube is less and cannot accommodate the maximum rise of liquid then
 - a) liquid will form fountain

- b) liquid will not rise
- c) the meniscus will adjust itself so that the water does not spill
- d) none of the above
- 47. What is the ratio of surface energy of 1 small drop and 1 large drop if 1000 drops combined to form 1 large drop?
 - a) 100:1
- b) 1000:1
- c) 10:1
- d) 1:100
- 48. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is $4.5 \times$ 10^{-2} Nm^{-1} .

	a) 8 mJ	b) 2.46 mJ	c) 4.93×10^{-4} J	d) None of these
49.		e length and radii in the rati		로마, 있고 있다면 보다 네프 방안 없었다면 보고 있었다면 보고 있습니다. (Here is in including a contract of the contract of
		ondition. If the pressure acro		of the combination is $1 m$ of
	water, the pressure di	fference across first capillary	of of	
	a) 9.4 m	b) 4.9 m	c) 0.49 m	d) 0.94 m
50.	17		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ound. The density of water is
	$1000 kg/m^3$ and dens	ity of air is $1.2kg/m^3$. Assun	ne the drop was spherical	throughout the fall and there
	is no air drag. The imp	act speed of the drop will be		
	a) 27 km/h	b) $550 \ km/h$	c) Zero	d) $129 km/h$
51.		18.03 g in air. A piece of met		7
		weigh 15.23 g in water. The	20' (075) NEW	
	a) $\frac{18.03}{17.03}$	b) $\frac{17.03}{18.03}$	c) $\frac{18.03}{19.83}$	d) $\frac{15.03}{17.03}$
F2		10100		
52.			325	g a liquid. The tank is open at
	1700			nes out of the two holes, the
	tank will experience a	net horizontal force proport	ional to	
	h			
	▼			
		.		
	> 1 1/2	1 2 12 /2	3.4	?
	a) $h^{1/2}$	b) h ^{3/2}	c) h	d) h^2
53.		lifferent radii are connected		
	1.70	pigger bubble to the smaller		5
	72 (77.77)	er bubble to the smaller bub	ole till the sizes are interc	hanged
		maller bubble to the bigger		
F.4	d) There is no flow of a			
54.		soap solution is 0.03 Nm ⁻¹ .	the work done in blowing	g to from a soap bubble of
	surface area 40 cm^2 , (i		a) 12 × 10-4	d) 24×10^{-4}
FF	a) 1.2×10^{-4}		c) 12×10^{-4}	
55.		ıllet into a gasoline tank mak 0 <i>atm</i> . The stored gasoline h		
	gasoline begins to sho		as a delisity of 660 kg/ii	. The velocity with which
	a) $27.8ms^{-1}$	b) $41.0ms^{-1}$	c) $9.6ms^{-1}$	d) 19.7ms ⁻¹
56	1.50			he radius of the capillary tube
50.		en the rate of flow of liquid		ne radius of the capillary tube
	a) + 10%	b) + 46%	c) -10%	d) -40%
57		r any other salt which is solu		
57.	a) Increases	any other sait which is sold	b) Decreases	rater, its surface tension
	100	rease depending upon salt	d) None of the above	
58.	17 G	hen immersed in a liquid ha	15)	n: then
	a) Both pieces must ha		b) Both pieces must ha	
	c) Both pieces must ha		d) Both are floating to	Marian para para mengalika meliliki para m
59.		ume V is floating on water s		: 1985 (1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985
٠,٠		ater poured inside the spher		
	a) V/2	b) V/3	c) V/4	d) V
60.	1878 N N			e shape of the body. 3 different
		. 1984. T 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	어디었다. [16] 아이아 10 10 10 10 10 10 10 10 10 10 10 10 10	resents the physical situation?
	(The cross-sectional a	na magni – na na ara-ara-ara-di na manana na na na na di ina ara-ara-ara-ara-ara-ara-ara-ara-ara-ar	en e	00000000000000000000000000000000000000
	A THE STATE OF THE PROPERTY OF THE STATE OF	vii osteru võõpayti täreneenen läävää 11.5550171.25€);		

a) 1<2<3

b) 2<3<1

c) 3<2<1

d) 3<1<2

61. A boat carrying a number of large stones is floating in a water tank. What would happen to the water level, if a few stones are unloaded into water?

a) Rises

b) Falls

c) Remains unchanged

d) Rises till half the number of stones are unloaded and the begins to fall

62. A glass flask having mass 390 g and an interior volume of 500 cm³ floats on water when it is less than half filled with water. The density of the material of the flask is

a) $0.8 \,\mathrm{g}\,\mathrm{cc}^{-1}$

b) $2.8 \,\mathrm{g}\,\mathrm{cc}^{-1}$

c) 1.8 g cc⁻¹

d) $0.28 \,\mathrm{g}\,\mathrm{cc}^{-1}$

63. A liquid flows through a pipe of non-uniform cross-section. If A_1 and A_2 are the cross-sectional area of the pipe at two points, the ratio of velocities of the liquid at these points will be

64. A block of ice floats on a liquid of density 1.2 in a beaker then level of liquid when ice completely melt

a) Remains same

b) Rises

c) Lowers

d) (a), (b) or (c)

65. Eight drops of a density ρ and each of radius a are falling through air with a constant velocity 375cm s⁻¹. When the eight drops coalesce to from a single drop the terminal velocity of the new drop will be

a) $1.5 \times 10^{-2} \text{ ms}^{-1}$

b) $2.4 \times 10^{-2} \text{ ms}^{-1}$

c) $0.75 \times 10^{-2} \text{ ms}^{-1}$

d) $15 \times 10^{-2} \text{ ms}^{-1}$

66. A capillary tube (A) is dipped in water. Another identical tube (B) is dipped in a soap-water solution. Which of the following shows the relative nature of the liquid columns in the two tubes?

67. A wooden black, with a coin placed on its top, flats in water as shown in the figure. The distance h and l are shown there. After sometime, the coin falls into the water, then

a) both land h increace

b) both l and h decrese

c) l decrease and h increase

d) l increase and h decrease

68. A ball is made of a material of density ρ where $\rho_{oil} < \rho < \rho_{water}$ with ρ_{oil} and ρ_{water} respectively. The oil and water are immiscible. If the above ball is in equilibrium in mixture of this oil and water, which of the following pictures represents its equilibrium position?

69.	A drop of water breaks in correct?	nto two droplets of equal si	ze. In this process, which of	f the following statements is	
	- The Control of the	rature of the two droplets t	a kingga an ana manana an a	ature of the original drop	
		s of the two droplets is equa			
		f the two droplets is equal t		C.1 1.1	
70	5.	e areas of the two droplets	•		
70.		nercury. When 11.2 cm of v se in the other arm from its		the arms of the tube, now	
	a) 0.56 cm	b) 1.35 cm	c) 0.41 cm	d) 2.32 cm	
71		ty head of water is equal to			
K of the	a) 10.3 ms ⁻¹	b) 2.8 ms ⁻¹	c) 5.6 ms ⁻¹	d) 8.4 ms ⁻¹	
72.				ge pressure inside a bubble	
	of diameter 30 mm.		g	, , ,	
	a) 2 Pa	b) 4 Pa	c) 16 Pa	d) 8 Pa	
73.	A spherical ball is droppe	ed in a long column of visco	us liquid. Which of the follo	owing graphs represent the	
	variation of				
	(i)gravitational force wit	h time			
	(ii) viscous force with tin				
	(iii) net force acting on the	ne ball with time?			
	F A P				
	Q				
	R				
	t				
	a) Q,R,P	b) R, Q, P	c) P, Q, R	d) R, P, Q	
74.		ody of density $ ho$ in vacuum	then its apparent weight in	air of density σ is	
	a) $\frac{W\rho}{\sigma}$	b) $W\left(\frac{\rho}{\sigma}-1\right)$	c) $\frac{W}{\rho}\sigma$	d) $W\left(1-\frac{\sigma}{\rho}\right)$	
75.		to a close tap reads 3.5×1	0° Nm ⁻² . When the valve is	s opened, the reading of	
	manometer falls to 3.0×10^5 Nm ⁻² , then velocity of flow of water is				

a) 100 ms^{-1}

b) 10 ms^{-1}

c) 1 ms^{-1}

d) $10\sqrt{10} \text{ ms}^{-1}$

76. A wooden ball of density *D* is immersed in water of density *d* to a depth *h* below the surface of water and then released. Upto what height will then ball jump out of water?

a) $\frac{d}{D}h$

b) $\left(\frac{d}{D} - 1\right)h$

c) h

d) Zero

77. The rate of flow of liquid through a capillary tube of radius r is V when the pressure difference across the two ends of the capillary is p. If pressure is increased by 3 p and radius is reduced to r/2, then the rate of flow becomes

a) V/9

b) 3V/8

c) V/4

d) V/3

78. A glass tube 80 cm long and open at both ends is half immersed in mercury. Then the top of the tube is closed and it is taken out of the mercury. A column of mercury 20 cm long then remains in the tube. The atmospheric pressure (in cm of Hg) is

a) 90

b) 75

c) 60

d) 45

79. A metallic sphere of mass M falls through glycerine with a terminal velocity v. If we drop a ball of mass 8 M of same metal into a column of glycerine, the terminal velocity of the ball will be

a) 2 v

b) 4 v

c) 8 v

d) 16 v

80. A vertical glass capillary tube, open at both ends, contains some water. Which of the following shapes may be taken by the water in the tube?

- 81. Two drops of the same radius are falling through air with a steady velocity of 5 cm per sec. If the two drops coalesce, the terminal velocity would be
 - a) 10 cm per sec
- b) 2.5 cm per sec
- c) $5 \times (4)^{1/3}$ cm per sec d) $5 \times \sqrt{2}$ cm per sec
- 82. In a streamline flow if the gravitational head ish. The kinetic and pressure heads are
 - a) v^2/g and p/ρ
- b) $v^2/2g$ and $p/\rho g$
- c) $v^2/2g$ and p/ρ
- d) $v^2/2$ and p/ρ g
- 83. Two soap bubbles *A* and *B* are formed at the two open ends of a tube. The bubble *A* is smaller than bubbleB. Valve and air can flow freely between the bubbles, then
 - a) There is no change in the size of the bubbles
 - b) The two bubbles will become of equal size
 - c) A will become smaller and B will become larger
 - d) B will become smaller and A will become larger
- 84. Water is moving with a speed of 5.18 ms⁻¹ through a pipe with a cross-sectional area of 4.20 cm². The water gradually descend 9.66 m as the pipe increase in area to 7.60 cm². The speed of flow at the lower level is
 - a) 3.0 ms^{-1}
- b) 5.7 ms^{-1}
- c) 3.82 ms^{-1}
- d) 2.86 ms^{-1}
- 85. The velocity of the surface layer of water in a river of depth 10 m is 5 m s⁻¹. The shearing stress between the surface layer and the bottom layer is (Coefficient of viscosity of water, $\eta = 10^{-3}$ SI units)
 - a) $0.6 \times 10^{-3} \text{N m}^{-2}$
- b) $0.8 \times 10^{-3} \text{N m}^{-2}$
- c) $0.5 \times 10^{-3} \text{N m}^{-2}$
- d) 10^{-3} N m⁻²
- 86. A wooden piece can float both in mercury (of density 13.6 gm/cc) and in water (of density 1 gm/cc). The ratio of mass of mercury displaced to the mass of water displaced is
 - a) 1

- b) 13.6

- 87. An adulterated sample of milk has density of 1032 kg m^{-3} , while pure milk has a density of 1080 kg m^{-3} . Then the volume of pure milk in a sample of 10 L of adulterated milk is
 - a) 0.5 L
- b) 1.0 L
- d) 4.0 L
- 88. A lead shot of 1mm diameter falls through a long column of glycerine. The variation of its velocity v. with distance covered is represented by

- 89. The rate of flow of liquid through an orifice of a tank does not depend upon
 - a) the size of orifice

b) density of liquid

c) the height of fluid column

- d) acceleration due to gravity
- 90. A beaker containing water is balance on the pan of a common balance. A solid of specific gravity 1 and mass 5 g is tied to the arm of the balance and immersed in water contained in the beaker. The scale pan with the beaker
 - a) Goes down
- b) Goes up
- c) Remains unchanged
- d) None of these

91. To get the maximum flight, a ball must be thrown as

- d) None of these
- 92. With rise in temperature, density of a given body changes according to one of the following relations

	a) $\rho = \rho_0 [1 + \gamma d\theta]$	b) $\rho = \rho_0 [1 - \gamma d\theta]$	c) $\rho = \rho_0 \gamma d\theta$	d) $\rho = \rho_0 / \gamma d\theta$
93.	By sucking through a stra	w, a student can reduce th	e pressure in his lungs to 7	50 mm of Hg (density =
	$13.6 \mathrm{g}\mathrm{cm}^{-3}$). Using the st	traw, he can drink water fr	om a glass upto a maximur	n depth of
	a) 10 cm	b) 75 cm	c) 13.6 cm	d) 1.36 cm
94.				³ kg m ^{−3} . If outer diameter
		wl are 1 m and 2×10^4 kg s	m ⁻³ respectively, then the	inner diameter of the bowl
	will be			
2928	a) 0.94 m	b) 0.96 m	c) 0.98 m	d) 0.99 m
95.				omogeneous sphere floats
		ersed in mercury and the o	ther half in oil. The density	of the material of the
	sphere in gcc ⁻¹ is	13.64	3.73	D 12.0
06	a) 3	b) 6.4	c) 7.2	d) 12.8
96.		ot involved in the working/	b) Carburetor of automo	hilo
	a) Movement of spinningc) Blades of a kitchen mix		d) Heart attack	blie
97			deep has $50 cm^3$ of air tra	nned in it. The hall is
71.				spheric pressure = 70 cm of
	Hg and density of $Hg = 3$		cuapped an win be (demo-	spheric pressure "70 cm of
	a) 350 cm ³	b) 300 cm ³	c) $250 cm^3$	d) $22 cm^3$
98.	Surface tension vanishes	and the second s	.,	- ,
	a) absolute zero tempera		b) transition temperatur	e
	c) critical temperature		d) None of the above	
99.	From amongst the follow	ing curves, which one show	ws the variation of the velo	city v with time t for a small
	sized spherical body fallin	ng vertically in a long colur	nn of a viscous liquid	
	a) ^v ↑	1	c) ^v ↑	d) ^v ↑
		b)		
	ť		0 t	o ť
100			ed by oil column of height	2 mm, then the surface
		vill be $(r = 1 \text{ cm and density})$		VMAQUE BOOK FINITION TO COLUMN TO SUCH AN INCOLUMN TO
	a) 3.9 Nm ⁻¹	b) $3.9 \times 10^{-1} \text{ Nm}^{-1}$	그래, 그렇게하는 [[[하다]]	d) 3.9 dyne m ⁻¹
101	· 아이는 사람들은 살아들이 보고 있다. 아이는 아이는 아이는 아이는 아이는 사람이 있다.	streamline, the following c	^ TO TO NOTE TO NOTE TO THE PARTY OF THE PA	11 1
	a) Fluid should have high	T	b) Critical velocity should	d be large
102	c) Diameter of the tube sl		d) All of the above	ive density of the solid and
102	that of the liquid are resp		a oo g iii a iiquid. Tile relat	ive density of the solid and
	a) 3,2	1 To	3	128 5003
	u) 5,2	b) $2, \frac{3}{4}$	c) $\frac{3}{2}$, 2	d) 4,3
103	. A hydraulic lift is designe	d to life cars of maximum i	mass of 3000 kg. The area o	of cross-section of the piston
	는 성공에 가장 맞다면 있는 가지 ¹ 프라이트 레이트를 하는 것이 있다면 하는 것이 되었다. 그 사람들은 사람들이 되었다면 하는 것이다.		n pressure the smaller pist	
	a) $6.92 \times 10^5 \text{ Nm}^{-2}$	b) $7.82 \times 10^7 \text{ Nm}^{-2}$	c) $9.63 \times 10^9 \text{ Nm}^{-2}$	d) $13.76 \times 10^{11} \text{ Nm}^{-2}$
104	. Surface tension of a liquid			
	a) Gravitational force bet		b) Electrical force betwe	
	c) Adhesive force betwee		d) Cohesive force between	
105		과 성진 경기 (10년 12년 전 12년	us r placed horizontally, a	그렇게 하시하는 아들이 가지 않는데 얼마나 되었다. 그리얼 아들이 가는 그 없는 그 없는데 그렇게 되었다.
	and the common of the common o		f the tube is doubled and th	e rate of flow halved, the
	pressure difference will b		a) n/9	d) n/22
	a) 8 p	b) <i>p</i>	c) p/8	d) p/32

b) 607 g

c) 760 g

d) 670 g

107. If a liquid is placed in a vertical cylindrical vessel and the vessel is rotated about its axis, the liquid will take the shape of figure

108. An object of weight w and density ρ is submerged in a fluid of density ρ_1 . Its apparent weight will be

a)
$$w(\rho - \rho_1)$$

b) $(\rho - \rho_1)/w$

c)
$$w\left(1-\frac{\rho_1}{\rho}\right)$$

109. An engine pumps water continuously through a hose. Water leaves the hose with a velocity v and m is the mass per unit length of the water jet. What is the rate at which kinetic energy is imparted to water

a)
$$\frac{1}{2}mv^{3}$$

b) mv^3

c) $\frac{1}{2}mv^2$

d) $\frac{1}{2}m^2v^2$

110. The density of ice is $0.9 \, \mathrm{gcc}^{-1}$ and that of sea water is $1.1 \, \mathrm{gcc}^{-1}$. An ice berg of volume V is floating in sea water. The fraction of ice berg above water level is

b) 2/11

c) 3/11

d) 4/11

- 111. A cylindrical tank has a hole of $1 cm^2$ in its bottom. If the water is allowed to flow into the tank from a tube above it at the rate of 70 cm^3/sec . then the maximum height up to which water can rise in the tank is
 - a) 2.5 cm
- b) 5 cm
- c) 10 cm
- d) 0.25 cm
- 112. A balloon of volume 1500 m³ and weighing 1650 kg with all its equipment is filled with He (density 0.2 kg m⁻³). If the density of air be 1.3 kgm⁻³, the pull on the rope tied to the balloon will be
- b) 1950 kg
- c) 1650 kg
- 113. A liquid is flowing in a horizontal uniform capillary tube under a constant pressure difference P. The value of pressure for which the rate of flow of the liquid is doubled when the radius and length both are doubled is
 - a) P

c) $\frac{P}{2}$

- 114. Water falls from a tap, down the streamline
 - a) Area decreases

b) Area increases

c) Velocity remains same

- d) Area remains same
- 115. What is the radius of the biggest aluminium coin of thickness t and density ρ , which will still be able to float on the water surface of surface tensionS?

- 116. A square wire frame of size L is dipped in a liquid. On taking out a membrane is formed. If the surface tension of liquid is T, then the force acting on a frame will be
 - a) 2T/L
- b) 4T/L
- c) 8 T/L
- d) 16 T/L

- 117. A tank is filled with water of density $1~{\rm g~cm^{-3}}$ and oil of density $0.9~{\rm g~cm^{-3}}$. The height of water layer is 100 cm and of oil layer is 400 cm. If $g = 980 \text{ cm s}^{-2}$, then the velocity of efflux from an opening in the bottom of the tank is
 - a) $\sqrt{900 \times 980} \text{ cms}^{-1}$
- b) $\sqrt{1000 \times 980} \text{ cms}^{-1}$ c) $\sqrt{920 \times 980} \text{ cms}^{-1}$
- d) $\sqrt{950 \times 980} \text{ cms}^{-1}$
- 118. A 20 cm long capillary tube is dipped in water. The water rises upto 8 cm. If the entire arrangement is put in a freely falling elevator, the length of water column in the capillary tube will be
 - a) 8 cm
- b) 10 cm
- c) 4 cm
- d) 20 cm
- 119. A uniform rod of density ρ is placed in a wide tank containing a liquid $\sigma(\sigma > \rho)$. The depth of liquid in the tank is half the length of the rod. The rod is in equilibrium, with its lower end resting on the bottom of the tank. In this position, the rod makes an angle θ with the horizontal. Then $\sin \theta$ is equal to
 - a) $\frac{1}{2}\sqrt{\frac{\sigma}{\rho}}$
- c) $\sqrt{\frac{\rho}{\sigma}}$
- 120. A thread is tied slightly loose to a wire frame as in figure and the frame is dipped into a soap solution and taken out. The frame is completely covered with the film. When the portion A is punctured with a pin, the

- a) Becomes concave towards A
- Becomes convex towards A
- c) Either (a) or (b) depending on the size of A with respect to B
- d) Remain in the initial position
- 121. A candle of diameter d is floating on a liquid in a cylindrical container of diameter D(D >> d) as shown in figure. If it is burning at the rate of 2cm/hour then the top of the candle will

a) Remain at the same height

b) Fall at the rate of 1 cm/hour

c) Fall at the rate of 2 cm/hour

- d) Go up the rate of 1 cm/hour
- 122. A drop of liquid of diameter 2.8 mm breaks up into 125 identical drops. The change in energy is nearly $(S = 75 \text{ dyne cm}^{-1})$
 - a) Zero
- b) 19 erg
- c) 46 erg
- d) 74 erg
- 123. There is a hole of area A at the bottom of a cylindrical vessel. Water is filled upto a height h and water flows out in t sec. If water is filled to a height 4 h, then it will flow out in time
 - a) 2 t

d) 7/4 t

124. In the figure, the velocity V_3 will be

- a) Zero
- b) $4ms^{-1}$
- c) $1ms^{-1}$
- d) $3ms^{-1}$
- 125. A closed rectangular tank is completely filled with water and is accelerated horizontally with an acceleration a towards right. Pressure is (i) maximum at, and (ii) minimum at

- a) (i) B (ii) D
- b) (i) C (ii) D
- c) (i) B (ii) C
- d) (i) B (ii) A
- 126. Two substances of densities ρ_1 and ρ_2 are mixed in equal volume and the relative density of mixture is 4. When they are mixed in equal masses, the relative density of the mixture is 3. The values of ρ_1 and ρ_2 are
 - a) $\rho_1 = 6$ and $\rho_2 = 2$
- b) $\rho_1 = 3$ and $\rho_2 = 5$
- c) $\rho_1 = 12$ and $\rho_2 = 4$
- d) None of these
- 127. A beaker of radius 15 cm is filled with a liquid of surface tension 0.75 Nm⁻¹. Force across an imaginary diameter on the surface of the liquid is
 - a) 0.075 N
- b) 1.5×10^{-2} N
- c) 0.225 N
- d) 2.25×10^{-2} N
- 128. A parrot sitting on the floor of a wire cage which is being carried by a boy, starts flying. The boy will feel that the cage is now
 - a) Heavier

b) Lighter

c) Shows no change in weight

- d) Lighter in the beginning and heavier later
- 129. A given shaped glass tube having uniform cross section is filled with water and is mounted on a rotatable shaft as shown in figure. If the tube is rotated with a constant angular velocity ω then

- a) Water levels in both sections A and B go up
- b) Water level in Section A goes up and that in B comes down
- c) Water level in Section A comes down and that in B it goes up
- d) Water levels remains same in both section
- 130. A liquid does not wet the solid surface if the angle of contact is
 - a) Zero
- b) equal to 45°
- c) equal to 90°
- d) greater than 90°
- 131. The spring balance A reads 2 kg with a block of mass m suspended from it. A balance B reads 5 kg when a beaker with liquid is put on the pan of the balance. The two balances are now so arranged that the hanging mass is inside the liquid in a beaker as shown in figure

2)	Tho	ha	lanca	1	revill	road	more	than	2	lea
a_{1}	1111	114	ALIE F	\mathcal{H}	WHIL	I Eatt	THE PERSON	HILAH	1.	KV

- b) The balance B will read less than 5 kg
- c) The balance A will read less than 2 kg and B will read more than 5 kg
- d) The balance A will read more than 2 kg and B will read less than 5 kg
- 132. The surface area of air bubble increases four times when it rises from bottom to top of a water tank where the temperature is uniform. If the atmospheric pressure is 10 m of water, the depth of the water in the tank is

a) 30 m

b) 40 m

c) 70 m

d) 80 m

133. A vessel, whose bottom has round holes with diameter 0.1 mm is filled with water. The maximum height upto which water can be filled without leakage is (Surface tension = 75 dyne cm⁻¹ and g = 1000 cms^{-2})

a) 100 cm

b) 75 cm

c) 60 cm

d) 30 cm

134. Water is flowing through a tube of non-uniform cross-section. Ratio of the radius at entry and exit end of the pipe is 3:2. Then the ratio of velocities at entry and exit of liquid is

b) 9:4

c) 8:27

d) 1:1

135. A ball whose density is $0.4 \times 10^3 \text{kg m}^{-3}$ falls into water from a height of 9 cm. To what depth does the ball sink?

a) 9 cm

b) 6 cm

c) 4.5 cm

d) 2.25 cm

136. The viscous force acting on a rain drop of radius 0.35 mm falling through air with a velocity of 1 ms⁻¹, is $(\eta = 2 \times 10^{-4} \text{ N s m}^{-2})$

a) $6.6 \times 10^{-6} \text{ N}$

b) 6.6×10^{-5} N

c) 1.32×10^{-7} N

d) 13.2×10^{-7} N

137. Two bodies are in equilibrium when suspended in water from the arms of a balance. The mass of one body is 36 g and its density 9 g/cm^3 . If the mass of the other is 48 g, its density in g/cm^3 is

138. Consider an iceberg floating in sea water. The density of sea water is 1.03 g cc⁻¹ and that ice is 0.92 g cc⁻¹ The fraction of total volume of iceberg above the level of sea water is nearby

b) 3%

c) 8%

139. A piece of wood if floating in water. When the temperature of water rises, the apparent weight of the wood will

a) Increase

b) Decrease

c) may increase or decrease

d) remain same

140. If the rise in height of capillary of two tubes are 6.6 cm and 2.2 cm, then the ratio of the radii of tubes is

b) 3:1

c) 1:2

141. A piston of cross-section area 100 cm^2 is used in a hydraulic press to exert a force of 10^7 dynes on the water. The cross-sectional area of the other piston which supports an object having a mass 2000 kg. is

a) $100 cm^2$

b) $10^9 cm^2$

c) $2 \times 10^4 \ cm^2$

d) $2 \times 10^{10} cm^2$

142. A water film is made between two straight parallel wires of length 10 cm separated by 5 mm from each other. If the distance between the wires is increased by 2 mm. How much work will be done? Surface tension for water is 72 dyne cm⁻¹

a) 288 erg

b) 72 erg

c) 144 erg

d) 216 erg

water in half-s	cylindrical shell, closed at both ends ubmerged state. If $ ho_c$ is the relative dct statement is that the shell is	N 	
a) More than l	half filled if $ ho_c$ is less then 0.5	b) More than half filled	if $ ho_c$ is less then 1.0
c) Half filled if	$ ho_c$ is less then 0.5	d) Less than half filled	if $ ho_c$ is less then 0.5
144. A body is just	floating on the surface of a liquid. The	density of the body is sa	me as that of the liquid. The
body is slightly	y pushed down. What will happen to	the body	
a) It will slowl	y come back to its earlier position	b) It will remain subme	erged, where it is left
c) It will sink		d) It will come out viole	ently
145. A cylinder of h	eight 20 m is completely filled with w	vater. The velocity of efflu	ix of water (in ms ⁻¹) through
a hole on the s	ide wall of the cylinder near its botto	m, is	
a) 10	b) 20	c) 25.5	d) 5
146. The rate of flo	w of liquid in a tube of radius r , lengt	h $\it l$, whose ends are maint	ained at a pressure difference
$P is V = \frac{\pi Q P r^4}{\eta l}$	where η is coefficient of the viscosity	and Q is	
a) 8	b) $\frac{1}{8}$	c) 16	d) $\frac{1}{16}$
147. Two soap bub	bles of radii r_1 and r_2 equal to 4 cm a	nd 5 cm respectively are	touching each other over a
	ce AB (shown in figure). Its radius w		
4 cm	5 cm		

 $1000 \text{ kg m}^{-3}, g = 9.81 \text{ ms}^{-2}$

a) 0.11Nm^{-1}

b) 0.7Nm^{-1}

c) 0.072 Nm^{-1}

d) None of these

149. Angle of contact of a liquid with a solid depend on

a) solid only

b) liquid only

c) both on solid and liquid

d) orientation of the solid surface in liquid

150. If the atmospheric pressure is P_a , then the pressure P at depth h below the surface of a liquid of density ρ open to the atmosphere is

a)
$$P_a - \frac{\rho gh}{2}$$

b)
$$P_a - \rho g h$$

c)
$$P_{\alpha}$$

d)
$$P_a + \rho gh$$

151. If a drop of water is broken in to smaller drops the surface energy

a) Increases

b) Decreases

c) Remains unchanged

d) Can increases as well as decreases

152. Two spherical soap bubbles of radii r_1 and r_2 in vacuum combine under isothermal conditions. The resulting bubble has radius equal to

a)
$$\frac{r_1 + r_2}{2}$$

b)
$$\frac{r_1 r_2}{r_1 + r_2}$$

c)
$$\sqrt{r_1r_2}$$

d)
$$\sqrt{r_1^2 + r_2^2}$$

153. Water flows through a vertical tube of variable cross-section. The area of cross-section at A and B are 6 and 3 mm² respectively. If 12 cc of water enters per second through A, find the pressure difference p_A – p_B (g = 10 ms⁻²) The separation between cross-section at A and B is 100 cm

a) 1.6×10^5 dyne cm⁻² b) 2.29×10^5 dyne cm⁻² c) 5.9×10^5 dyne cm⁻² d) 3.9×10^5 dyne cm⁻²

154. A small spherical ball of steel falls through a viscous medium with terminal velocity v. If a ball of twice the radius of the first one but of the same mass is dropped through the same method, it will fall with a terminal velocity (neglect buoyancy)

	υ
a)	2

b)
$$\frac{v}{\sqrt{2}}$$

155. A body of density ρ is dropped from rest at a height h into a lake of density σ , where $\sigma > \rho$. Neglecting all dissipative forces, calculate the maximum depth to which the body sinks before returning to float on the

a)
$$\frac{h}{\sigma - \rho}$$

b)
$$\frac{h\rho}{\sigma}$$

c)
$$\frac{h\rho}{\sigma-\rho}$$

d)
$$\frac{h \sigma}{\sigma - \rho}$$

156. One drop of soap bubble of diameter D breaks into 27 drops having surface tension. The change in surface energy is

a)
$$2\pi TD^2$$

b)
$$4\pi TD^2$$

c)
$$\pi TD^2$$

d)
$$8\pi TD^2$$

157. For a ball falling in a liquid with constant velocity, ratio of the resistance force due to the liquid to that due to gravity is

b)
$$\frac{2a^2\rho g}{9 n^2}$$

c)
$$\frac{2a^2(\rho-\sigma)g}{9n}$$

158. A solid sphere of volume V and density ρ floats at the interface of two immiscible liquids of densities ρ_1 and ρ_2 respectively. If $\rho_1 < \rho < \rho_2$, then the ratio of volume of the parts of the sphere in upper and lower liquid is

a)
$$\frac{\rho - \rho_2}{\rho_2 - \rho}$$

b)
$$\frac{\rho_2 - \rho}{\rho - \rho_1}$$

c)
$$\frac{\rho + \rho_1}{\rho + \rho_2}$$

d)
$$\frac{\rho + \rho_2}{\rho + \rho_1}$$

159. An incompressible liquid flows through a horizontal tube as shown in the following fig. Then the velocity vof the fluid is

- a) $3.0 \, m/s$
- b) $1.5 \, m/s$
- c) $1.0 \, m/s$
- d) $2.25 \, m/s$
- 160. Air is streaming past a horizontal air plane wing such that its speed is 120 ms⁻¹ over the upper surface and 90 ms⁻¹ at the lower surface. If the density of air is 1.3 kgm⁻³, what will be the gross life on the wing? If the wing is 10 m long and has an average width of 2 m,
 - a) 81.9 N
- b) 8.19 kN
- c) 81.9 kN
- d) 819 kN
- 161. A spherical drop of water has radius 1 mm if surface tension of water is 70×10^{-3} Nm⁻¹, difference of pressure between inside and outside of the spherical drop is
 - a) 35 Nm^{-2}
- b) 70 Nm^{-2}
- c) 140 Nm^{-2}
- d) Zero

- 162. Construction of submarines is based on
 - a) Archimedes principle b) Bernoulli's theorem
- c) Pascal's law
- d) Newton's laws
- 163. Water stands at level A in the arrangement shown in the figure. What will happen if a jet of air is gently blown into the horizontal tube in the direction shown in the figure?

- a) Water will rise above A in the capillary tube
- b) Water will fall below A in the capillary tube
- c) There will be no effect on the level of water in the capillary tube
- d) Air will emerge from end B in the form of bubbles

164.	A cylinder of mass m and	density $ ho$ hanging from a s	tring is lowered into a vess	el of cross-sectional area A		
	containing a liquid of density $\sigma(<\rho)$ until it is fully immersed. The increase in pressure at the bottom of					
	the vessel is					
	a) Zero	b) $\frac{mg}{4}$	c) $\frac{mg \rho}{\sigma^A}$	d) $\frac{m \sigma g}{\sigma A}$		
		\overline{A}	σA	ρA		
165.	A bird is sitting in a large	closed cage which is placed	l on a spring balance. It rec	ords a weight of 5N. The		
	bird of mass 0.5 kg files up	pward in the cage with an a	acceleration of 2 ms^{-2} . The	spring balance will now		
	record a weight of					
	a) 4 N	b) 5 N	c) 6 N	d) 7 N		
166.	A square plate of 0.1 m sid	de moves parallel to a seco	nd plate with a velocity of (0.1 m/s, both plates being		
	immersed in water. If the	viscous force is 0.002 N an	d the coefficient of viscosit	y is 0.01 poise, distance		
	between the plates in m is	S				
	a) 0.1	b) 0.05	c) 0.005	d) 0.0005		
167.	According to Bernoulli's e	equation				
	$\frac{P}{\rho a} + h + \frac{1}{2} \frac{v^2}{a} = \text{constant}$	*				
	ra - a					
		generally called respective	(5)),,			
		ssure head and velocity he	ad			
	b) Gravity, gravitational h	1985 mars Marian and Marian and Marian Marian and Marian and the second				
	c) Pressure head, gravitat	tional head and velocity hea	ad			
	d) Gravity, pressure and v		26			
168.	Two water pipes P and Q	having diameter 2×10^{-2}	m and $4 imes 10^{-2}$ m respecti	vely are joined in series		
	with the main supply line	of water. The velocity f wa	ter flowing in pipe P is			
	a) 4 times that of Q	b) 2 times that of Q	c) 1/2 times that of Q	d) 1/4 times that of Q		
169.	For a liquid which is risin	g in a capillary, the angle of	f contact is			
	a) Obtuse	b) 180°	c) Acute	d) 90°		
170.	Work done forming a liqu	id drop of radius R is W_1 ar	nd that of radius $3R$ is W_2 . T	The ratio of work done is		
	a) 1:3	b) 1:2	c) 1:4	d) 1:9		
171.	A large tank is filled with	water to a height H. A smal	l hole is made at the base o	f the tank. It takes T_1 time		
	to decrease the height of	water to $\frac{H}{}(\eta > 1)$: and it ta	akes T_2 time to take out the	rest of water. If $T_1 = T_2$,		
		η	(
	then the value of η is	b) 2	a) 4	J) o /5		
	a) 2	b) 3	c) 4	d) $2\sqrt{2}$		
172.		a liquid is determined by		W- W		
150 <u>150 150</u> 15	a) Pascal's law	b) Magnus effect	c) Reynold's number	d) Bernoulli's principle		
173.			ter rushing from a hole ma			
		oor at maximum horizonta	l distance, then the depth o	f the hole from the free		
	surface must be	2	4	4		
	a) $\left(\frac{3}{4}\right)H$	b) $\left(\frac{2}{3}\right)H$	c) $\left(\frac{1}{4}\right)H$	d) $\left(\frac{1}{2}\right)H$		
	(4)	(3)	(4)	(4)		
1/4.			er of d_1' cm, while the large			
			force on the large piston 'F	20 20 20 20 20 20 20 20 20 20 20 20 20 2		
	a) $F_2 = \frac{d_2^2}{d_1^2} F_1$	b) $F_2 = \frac{d_1^2}{d_2^2} F_1$	c) $F_2 = \frac{d_1^2}{d_1^2} = \frac{1}{d_1^2}$	d) $F_2 = \frac{d_2^2}{d_1^2} \frac{1}{F_1}$		
	d_1^{2-1}	d_2^{2-1}	$d_2^2 F_1$	$d_1^2 F_1$		
175.	On which of the following	, the terminal velocity of a	solid ball in a viscous fluid	is independent?		
	a) Area of cross-section	b) Height of the liquid	c) Density of the ball	d) Density of the liquid		
176.		th of a lake is equal to 2/3	pressure at the bottom of t	he lake then what is depth		
	of the lake					
	a) 10 m	b) 20 m	c) 60 m	d) 30 m		

177. A sphere of radius	R is gently dropped into lic	quid of viscosity η in a ve	rtical uniform tube. It attai	ns a
terminal velocity \imath terminal velocity	. Another sphere of radius	2R when dropped into the	ne same liquid, will attains	its
a) <i>v</i>	b) 2v	c) 4v	d) 9 <i>v</i>	
178. When two soap bu	bbles of radius r_1 and r_2 (r_2	$(r_1 > r_1)$ coalesce, the radi		surface is
a) $(r_2 - r_1)$	b) $(r_2 + r_1)$	c) $\frac{r_2 - r_1}{r_1 r_2}$	d) $\frac{r_2 r_1}{r_2 - r_2}$	

b) ηmg

d) $(\eta - 1)mg$

180. A liquid does not wet the sides of a solid, if the angle of contact is

a) Obtuse

b) 90°

- c) acute
- d) Zero
- 181. Water in a vessel of uniform cross-section escapes through a narrow tube at the base of the vessel. Which graph given below represents the variation of the height *h* of the liquid with time*t*?

182. A ring is cut from a platinum tube 8.5 cm internal diameter and 8.7 cm external diameter. It is supported horizontally from a pan of a balance so, that it comes in contact with the water is in glass vessel. If an extra 3.47 g-wt is required to pull it away from water, surface tension of water is

a) 72.07 dyne cm⁻¹

- b) 70.80 dyne cm⁻¹
- c) 65.35 dyne cm⁻¹
- d) 60.00 dyne cm⁻¹
- 183. We have two (narrow) capillary tubes T_1 and T_2 . Their lengths are l_1 and l_2 and radii of cross-section are r_1 and r_2 respectively. The rate of flow of water under a pressure difference P through tube T_1 is $8cm^3/sec$. If $l_1=2l_2$ and $r_1=r_2$, what will be the rate of flow when the two tubes are connected in series and pressure difference across the combination is same as before (=P)

a) 4 cm³/sec

- b) $(16/3)cm^3/sec$
- c) (8/17)cm³/sec
- d) None of these
- 184. A U-tube is partially filled with water. Oil which does not mix with water is next poured into one side until water rises by 25 cm. On the other side, if the density of oil be 0.8, the oil level will stand higher than the water level by

a) 6.25 cm

- b) 12.50 cm
- c) 31.25 cm
- d) 62.50 cm
- 185. The potential energy of molecule on the surface of a liquid compared to one inside the liquid is

a) Zero

- b) Lesser
- c) Equal
- d) Greater
- 186. Two metal spheres are falling through a liquid of density $2\times 10^3 kg/m^3$ with the same uniform speed. The material density of sphere 1 and sphere 2 are 8×10^3 kg/m^3 and $11\times 10^3 kg/m^3$ respectively. The ratio of their radii is

a) $\frac{11}{8}$

- b) $\sqrt{\frac{11}{8}}$
- c) $\frac{3}{2}$

- d) $\sqrt{\frac{3}{2}}$
- 187. An L-shaped tube with a small orifice is held in a water stream as shown in fig. The upper end of the tube is $10.6 \ cm$ above the surface of water. What will be the height of the jet of water coming from the orifice? Velocity of water stream is $2.45 \ m/s$

a) Zero

b) 20.0 cm

c) 10.6 cm

d) 40.0 cm

188. By inserting a capillary tube upto a depth l in water, the water rises to a heighth. If the lower end of the capillary tube is closed inside water and the capillary is taken out and closed end opened, to what height the water will remain in the tube, when l > h?

a) Zero

b) l+h

c) 2 h

d) h

189. An aeroplane of mass 3×10^4 kg and total wing area of 120 m² is in a level flight at some height. The difference in pressure between the upper and lower surface of its wings in kilo pascals is $(g = 10 \text{ ms}^{-2})$

a) 2.5

b) 5.0

c) 10.0

190. A liquid X of density 3.36 g cm⁻³ is poured in a U-tube, which contains Hg. Another liquid Y is poured in left arm with height 8 cm, upper levels of X and Y are same. What is density of Y?

a) $0.8 \, \text{gcc}^{-1}$

b) $1.2 \, \text{gcc}^{-1}$

c) 1.4 gcc⁻¹

d) 1.6gcc⁻¹

191. A large open tank has two holes in its wall. One is a square hole of side a at a depth of x from the top and the other is a circular hole of radius r at a depth 4x from the top. When the tank is completely filled with water, the quantities of water flowing out per second from both holes are the same. Then r is equal to

a) 2πa

b) A

192. A wooden block of volume 1000 cm³ is suspended from a spring balance. It weighs 12 N in air. It is suspended in water such that half of the block is below the surface of water. The reading of the spring balance is

a) 10 N

b) 9 N

c) 8 N

193. An aquarium tank is in the shape of a cube with one side a 4m tall glass wall. When the tank is half filled and the water is 2 m deep, the water exerts a force F on the wall. What force does the water exerts on the wall when the tank is full and the water is 4 m drop?

a) 1/2 F

c) 2 F

194. Let W be the work done, when a bubble of volume V is formed from a given solution. How much work is required to be done to form a bubble of volume 2 *V*?

a) W

b) 2W

c) $2^{1/3} W$

d) $4^{1/3}$ W

195. The diagram shows three soap bubbles A, B and C prepared by blowing the capillary tube fitted with stop cocks S_1, S_2 and S_3 . With stop cock S closed and stop cocks S_1, S_2 and S_3 . Opened

a) B will start collapsing with volumes of A and C

b) C will start collapsing with volume of A and B

Volume of A, B and C will become equal in equilibrium

d) C and A will both start collapsing with volume of B increasing

196. The surface energy of a liquid drop is u. It is sprayed into 1000 equal droplets. Then its surface energy becomes

	a) u	b) 10 u	c) 100 u	d) 1000 u
197.	16 cm ³ Of water flows per	r sec through a capillary tu	be of radius a cm and of le	l cm when connected
	to a pressure head of h cm	n of water. If a tube of the s	same length and radius $a/2$	cm is connected to the
	50.07	160	hrough the tube per second	
	a) 16 cm ³	b) 1 cm ³	c) 4 cm ³	d) 8 cm ³
198.			will spread as a thin layer	because
	이용	o give the oil a spherical su		
	그 사이를 잃었다면 되는데 아이지 얼마나 보고 얼마나 하나 아이나 아니는 아니다.	er is greater than that of oil		
		e nearly equal surface tens	ion	
100	d) oil is lighter than water		ded from the spring balance	The parret starts flying
199.	The reading of the spring	100	ied from the spring balance	e. The parrot starts hymg.
	a) Increase	b) Decrease	c) Not change	d) Be zero
200.			s 8 cms ⁻¹ . If the perpendic	
	layers is 0.1 cm, then velo		r r r r r r r r r r r r r r r r r r r	
	a) $40 s^{-1}$	b) 50 s ⁻¹	c) 60s^{-1}	d) 80 s^{-1}
201.	Two rain drops falling thr	ough air have radii in the r	ratio 1:2. They will have ter	minal velocity in the ratio
	a) 4:1	b) 1:4	c) 2:1	d) 1:2
202.	Three capillaries of length	L, $L/2$ and $L/3$ are conne	ected in series. Their radii a	are $r, r/2$ and $r/3$
		am-line flow is to be maint	ained and the pressure acro	oss first capillary is p , then
	the			
		oss the end of second capi		
	20 (1) (The called the State of Language Constitution of the	oss the third capillary is 4	90.700	
		oss the end of second capi		
202		oss the third capillary is 5	σ_{p} is four time that of anothe	r drap Than thair
203.	respective mass ratio is	e a spilerical drop of water	is lour time that of anothe	r drop. Then then
	a) 1:16	b) 8:1	c) 1:4	d) 1:64
204.			· ·	s 8cm × 3.75 cm to 10cm ×
		face tension of the film in I	[M. H.	
	a) 1.65×10^{-2}	b) 3.3×10^{-2}	c) 6.6×10^{-2}	d) 8.25×10^{-2}
205.	10 cm long wire is placed	horizontally on the surface	e of water and is gently pul	led up with a force of 2 $ imes$
	10^{-2} N to keep the wire in		tension of water in Nm^{-1} is	i
	a) 0.002	b) 0.001	c) 0.2	d) 0.1
206.			he false statement regardir	ng rise from the following
		er, height will be less than i		
		n constant acceleration, he		
		oon, the height is more tha		
207		vith constant acceleration l	neight is less than <i>n</i> led a tall cylinder containin	g honey. If the marble
207.		akin na ikitana di Marinitan <u>-</u> matika perana manikana	al velocity is proportional t	
			2	20 St
		b) $(x - y)$		d) $\frac{r}{r}$
208.			ly rate of $2 \times 10^{-3} \text{ ms}^{-1}$ th	
	$1.5 \times 10^3 \text{ kg m}^{-3}$, the coef	fficient of viscosity neglect	ting the density of air, will l	$g = 10 \text{ ms}^{-2}$
	a) 23.2 units	b) 83.5 units	c) 334 units	d) 167 units
209.		그래, 마음 아들이 가르게 있었다며 하면 생각이 되는 아들이 하는 것을 하게 했다. 그리고 없다.	aving densities ρ_1 and ρ_2 re	[2017] [2017] - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
				n the position shown in the
	figure. Which of the follow	wing is true for ρ_1 , ρ_2 and ρ_3	03!	

a)	ρ_3	<	01	<	0
~,	P 3	-	PI	-	1

b)
$$\rho_1 < \rho_3 < \rho_2$$

c)
$$\rho_1 < \rho_2 < \rho_3$$

d)
$$\rho_1 < 3 < \rho_2$$

210. The velocity of a small ball of mass M and density d_1 when dropped in a container filled with glycerine becomes constant after some time. If the density of glycerine is d_2 , the viscous force acting on the ball is

a)
$$Mg\left(1\frac{d_2}{d_1}\right)$$

b)
$$Mg\frac{d_1}{d_2}$$

c)
$$Mg(d_1 - d_2)$$

d)
$$Mgd_1d_2$$

211. A small tiny lead shot is gently dropped on the surface of a viscous liquid

- a) The lead shot will fall with an acceleration equal to g at that place
- b) The velocity of lead shot will decrease with time
- c) The velocity of lead shot will increase continuously
- d) The velocity of lead shot will reach steady value after sometime
- 212. From the adjacent figure, the correct observation is

- a) the pressure on the bottom of the tank A is greater than at the bottom of B
- b) the pressure on the bottom of the tank A smaller than at the bottom of B
- c) the pressure depends on the shape of the container
- d) the pressure on the bottom of A and B is the same
- 213. A sphere liquid drop of radius R is divided into eight equal to droplets. If surface tension is T, then the work done in this process will be

a)
$$2\pi R^2 T$$

b)
$$3\pi R^2 T$$

c)
$$4\pi R^2 T$$

d)
$$2\pi RT^2$$

214. A cylinder is filled with liquid of density d upto a height h. If the cylinder is at rest, then the mean pressure of the walls is

a)
$$hdg/4$$

b)
$$hdg/2$$

215. The rate of steady volume flow of water through a capillary tube of length l and radius r, under a pressure difference of p si V. This tube is connected with another tube of the same length but half the radius, in series. Then the rate of steady volume flow through them is (The pressure difference across the combination is p)

a)
$$\frac{v}{16}$$

b)
$$\frac{V}{17}$$

c)
$$\frac{16V}{17}$$

d)
$$\frac{17V}{16}$$

216. A cubical block of wooden edge I and a density ρ floats in water of density 2ρ . The lower surface of cube just touches the free end of a massless spring of force constant k fixed at the bottom of the vessel. The weight w put over the block so that it is completely immersed in water without wetting the weight is

a)
$$a(l \rho g + k)$$

b)
$$a(l^2 \rho g + k)$$

c)
$$a\left(\frac{l \rho g}{2} + 2k\right)$$
 d) $a\left(l^2 \rho g + \frac{k}{2}\right)$

d)
$$a\left(l^2 \rho g + \frac{k}{2}\right)$$

217. An object weighs m_1 in a liquid of density d_1 and that in liquid of density d_2 is m_2 . The density d of the

a)
$$d = \frac{m_2 d_2 - m_1 - d_1}{m_2 - m_2}$$

b)
$$d = \frac{m_1 d_1 - m_2 - d_1}{m_2 - m_1}$$

c)
$$d = \frac{m_2 d_1 - m_1 - d}{m_1 - m_2}$$

a)
$$d = \frac{m_2 d_2 - m_1 - d_1}{m_2 - m_1}$$
 b) $d = \frac{m_1 d_1 - m_2 - d_2}{m_2 - m_1}$ c) $d = \frac{m_2 d_1 - m_1 - d_2}{m_1 - m_2}$ d) $d = \frac{m_1 d_2 - m_2 - d_1}{m_1 - m_2}$

218. Two pieces of glass plate one upon the other with a little water in between them cannot be separated easily because of

- a) Inertia
- b) Pressure
- c) Surface tension
- d) Viscosity

- 219. Two capillary tubes of same radius r but of lengths l_1 and l_2 are fitted in parallel to the bottom of a vessel. The pressure head is P. What should be the length of a single tube that can replace the two tubes so that the rate of flow is same as before
 - a) $l_1 + l_2$
- b) $\frac{1}{l_1} + \frac{1}{l_2}$
- c) $\frac{l_1 l_2}{l_1 + l_2}$
- $d)\frac{1}{l_1+l_2}$
- 220. Water is filled in a cylindrical container to a height of 3m. The ratio of the cross-sectional area of the orifice and the beaker is 0.1 The square of the speed of the liquid coming out from the orifice is $(g = 10 \, \text{ms}^{-2})$

- a) $50 \text{ m}^2\text{s}^{-2}$
- b) $50.5 \text{ m}^2\text{s}^{-2}$
- c) $51 \text{ m}^2\text{s}^{-2}$
- d) $52 \text{ m}^2\text{s}^{-2}$
- 221. A cubical block is floating in a liquid with half of its volume immersed in the liquid. When the whole system accelerates upwards with acceleration of g/3, the fraction of volume immersed in the liquid will be

a) $\frac{1}{2}$

b) $\frac{3}{9}$

c) $\frac{2}{3}$

- d) $\frac{3}{4}$
- 222. Two tubes A and B are in series. Radius of A is R and that of B is 2R. If water flows through A with velocity then velocity of water through B is
 - a) $\frac{v}{2}$

b) *v*

c) $\frac{v}{4}$

- d) $\frac{v}{8}$
- 223. A hollow cylinder of mass m made heavy at its bottom is floating vertically in water. It is tilled from its vertical position through an angle θ and is left. The restoring force acting on it is
 - a) mg cos θ
- b) $mg \sin \theta$
- c) $mg\left[\frac{1}{\cos\theta}-1\right]$
- d) $mg\left[\frac{1}{\cos\theta}+1\right]$
- 224. With an increase in temperature, surface tension of liquid (except molten copper and cadmium)
 - a) increases

b) remain same

c) decreases

- d) first decrease and then increases
- 225. A body floats in water with 40% of its volume outside water. When the same body floats in an oil, 60% of its volume remains outside oil. The relative density of oil is
 - a) 0.9

b) 1.0

c) 1.2

- d) 1.5
- 226. A uniform tapering vessel shown in figure is filled with liquid of density 900 kgm $^{-3}$. The force that acts on the base of the vessel due to liquid is (take g =10 ms $^{-2}$)

- a) 3.6 N
- b) 7.2 N
- c) 9.0 N
- d) 12.0 N

- 227. At critical temperature, the surface tension of a liquid is
 - a) Zero

- b) Infinity
- c) The same as that at any other temperature
- d) Cannot be determined
- 228. A fire hydrant delivers water of density ρ at a volume rate L. The water travels vertically upwards through the hydrant and then does 90° turn to emerge horizontally at speed v. The pipe and nozzle have uniform cross-section throughout. The force exerted by water on the corner of the hydrant is

a) Zero

b) pvL

c) $\sqrt{2} pvL$

d) 2 pvL

229. In stream line flow of liquid, the total energy of liquid is constant at

a) all points

b) inner points

c) outer points

d) None of these

230. A small sphere of mass m is dropped from a great height. After it has fallen 100 m, it has attained its terminal velocity and continues to fall at that speed. The work done by air friction against the sphere during the first 100 m of fall is

a) Greater than the work done by air friction in the second 100 m

b) Less than the work done by air friction in the second 100 m

c) Equal to 100 mg

d) Greater than 100 mg

231. A trough contains mercury to a depth of 3.6 cm. If some amount of mercury is poured in it then height of mercury in the trough will be

a) 3.6 cm

b) 7.2 cm

c) 6 cm

d) None of these

232. A spherical solid ball of volume V is made of a material of density $\rho_2(\rho_2 < \rho_1)$. [Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed v, ie, $F_{viscous} = -kv^2(k > 1)$ 0)]. The terminal speed of the ball is

a) $\sqrt{\frac{Vg(\rho_2 < \rho_2)}{k}}$ b) $\frac{Vg\rho_1}{k}$

c) $\sqrt{\frac{Vg\rho_1}{k}}$

d) $\frac{Vg(\rho_1 < \rho_2)}{k}$

233. A uniform long tube is bent into a circle of radius R and it lies in a vertical plane. Two liquids of same volume but densities ρ and δ fill half the tube. The angle θ is

a) $\tan^{-1}\left(\frac{\rho-\delta}{\rho+\delta}\right)$ b) $\tan^{-1}\frac{\rho}{\delta}$

c) $\tan^{-1}\frac{\delta}{\rho}$

d) $\tan^{-1}\left(\frac{\rho+\delta}{\rho-\delta}\right)$

234. If two soap bubbles of different radii are connected by a tube

a) air flows from the bigger bubble to the smaller bubble till the sizes become equal

b) air flows from bigger bubble to the smaller bubble till the sizes are interchanged

c) air flows from the smaller bubble to the bigger

d) there is no flow of air

235. The top surface of an incompressible liquid is open to the atmosphere. The pressure at a depth P_1 . How does the pressure P_2 at depth $h_2 = 2h_1$ compare with P_1 ?

b) $P_2 = 2P_1$

c) $P_2 < 2P_1$

d) $P_2 = P_1$

236. A frame made of a metallic wire enclosing a surface area A is covered with a soap film. If the area of the frame of metallic wire is reduced by 50%, the energy of the soap film will be changed by

a) 100%

b) 75%

c) 50%

237. Two cylinders of same cross-section and length L but made of two material of densitites ρ_1 and ρ_2 (in CGS units) are cemented together to form a cylinder of length 2 L. If the combination floats in water with a length L/2 above the surface of water and $\rho_1 < \rho_2$, then

a) $\rho_1 > 1$

b) $\rho_1 < 3/4$

c) $\rho_1 > 1/2$

d) $\rho_1 > 3/4$

238. A frame made of metallic wire enclosing a surface area A is covered with a soap film. If the area of the frame of metallic wire is reduced by 50%, the energy of the soap film will be changed by

a) 100%	b) 75%	c) 50%	d) 25%	
239. The glycerin of density 1			2.50 C	
respectively. The pressu	respectively. The pressure difference across the ends is 10 Nm ⁻² . The rate of flow of glycerine through the			
tube is		2 2 4	2 2 4	
	b) $6.4 \times 10^{-4} \mathrm{m}^3 \mathrm{s}^{-1}$		d) $12.8 \times 10^3 \text{ m}^3 \text{s}^{-1}$	
240. Water rises in a capillary	tube to a height <i>h.</i> It will ri	ise to a height more than <i>h</i>		
a) On the surface of sun				
b) In a life moving down	with an acceleration			
c) At the poles	d au agalaustiau			
d) In a lift moving up wit 241. Water flows through a fr		ing aross saction as shown	in Fig (i) Programs mat	
points along the y-axis is		ing cross-section as snown	in Fig (i). Fressure p at	
points along the y-axis is	represented by			
	4	an a		
<i>p</i> •	<i>p</i> •	$p \blacktriangle$	p ightharpoonup	
	13	3	Γ	
a)	b)	c)	d) \	
 x	► X		→ x	
242. Blood is flowing at the ra	ate of 200 $cm^3 s^{-1}$ in a capi	illary of cross sectional area	$0.5 m^2$. The velocity of	
flow, in mms^{-1} , is		,		
a) 0.1	b) 0.2	c) 0.3	d) 0.4	
243. Radius of an air bubble a	t the bottom of the lake is a	r and it becomes $2r$ when th	e air bubble rises to the top	
surface of the lake. If ρ c	m of water be the atmosph	eric pressure, then the dept	h of lake is	
a) 2 <i>p</i>	b) 8p	c) 4p	d) 7p	
244. A liquid of density 800 k	·프리아인(1884) 라마 (1884) (1885) (1884) (1884) (1884) (1884) (1884) (1884) (1884) (1884) (1884) (1884) (1884)	그리고 가장 살아보면 하면 하면 하면 하면 가장 그래요?	er 18 10 - 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
		hole at the bottom is(1 atm		
a) 10 ms ⁻¹	b) 20 ms ⁻¹	c) 30 ms ⁻¹	d) 40 ms ⁻¹	
245. A container with square				
	hat acceleration the contain	ner must be accelerated, so	that the water does not	
come out?	a	2 a H	2 a h	
a) G	b) $\frac{g}{2}$	c) $\frac{2gH}{2}$	d) $\frac{2gh}{g}$	
246. Work done in increasing	the size of soap bubble fro	4	nearly (surface tension of	
soap solution= 0.03Nm	로 즐겁게 있습니다. 이번 경기 전에 보고 있다면 하면 보고 있다면 하면 보고 있다. 그런 사람들이 되었습니다. 그런			
a) 0.2π mJ	b) 2 π mJ	c) $0.4 \pi \text{ mJ}$	d) 4π mJ	
247. A small iron sphere is dr				
Then, it covers the rest o	f the path with terminal ve	locity only. The work done	by air friction during the	
first 32 m of fall is W_1 . The	ne work done by air frictior	n during the subsequent 32	m fall is W_2 . Then	
a) $W_1 > W_2$	b) $W_1 < W_2$	c) $W_1 = W_2$	d) $W_2 = 32 W_1$	
248. Water flows in a streaml	ined manner through a cap	oillary tube of radius a , the j	oressure difference being P	
and the rate of flow Q . If	the radius is reduced to $a/$	2 and the pressure increase	ed to $2P$, the rate of flow	
becomes				
a) 4 <i>Q</i>	b) Q	c) $\frac{Q}{4}$	d) $\frac{Q}{8}$	
249. A cylindrical vessel is fill	ed with equal amounts of v	veight of mercury on water	. The overall height of the	
150		13.6. Then the pressure of	9 7 43	
the vessel is	200 - TOURS - 100 - TOURS - 10		19	
a) 29.2 cm of water		b) 29.2 /13.6 cm of merc	ury	
c) 4 cm of mercury		d) 15.6 cm of mercury		

250. The pressure on a swimmer 20 m			D 2.0 .
a) 1.0 atm b) 2.0 a		c) 2.5 atm	d) 3.0 atm
251. A jar shown in figure is filled with	Prince of the Principle of Principle of the Principle of	. 프로그램 프로그램 및 경기 (1987년 - 1987년) 전 1987년 - 1987년 (1987년 - 1987년 - 1987년 - 1987년 - 1987년 - 1987년 - 1987년 - 198 - 1987년 - 1987	na na samaniki sana Sibana na mana na na kitabilihin na na kita na kita na sana na
is circular and base is having a rac	lius R. The force ex	terted by the liquid column	on the base of the jar is
30° h 60° c			
a) $\rho g(a+b+c)\pi R^2$		b) Less than ρ g($a + b + a$	$r(\pi R^2)$
c) Greater than ρ g(a + b + c) πR^2	2	d) $2\rho g(a + b + c)\pi R^2$	
252. Water flows steadily through a ho	rizontal pipe of var	riable cross-section. If the p	pressure of water is p at a
point where flow speed is v , the p	ressure at another	point where the flow of sp	eed is $2v$, is (take density of
water as ρ)			
a) $p - \frac{3\rho v^2}{2}$ b) $p - \frac{1}{2}$	$\frac{\rho v^2}{2}$	$3\rho v^2$	d) $p - \rho v^2$
2	2	4	
253. A horizontal pipe of non-uniform of when pressure is 50 kPa at a point pressure at that point should be	t. If the velocity of f	flow has to be 2 ms ⁻¹ at so	me other point, the
a) 50 kPa b) 100		c) 48.5 kPa	d) 24.25 kPa
254. A sphere of mass M and radius R i	s dropped in a liqu	iid, then terminal velocity o	97247
a) R b) $\frac{1}{R}$		c) R ²	d) $\frac{1}{R^2}$
255. Three liquids of equal masses are	taken in three iden	ntical cubical vessels A.Bar	Λ
ρ_A , ρ_B and ρ_C respectively but ρ_A vessel is			
a) maximum in vessel <i>C</i>		b) maximum in vessel C	
c) the same in all the vessels		d) maximum in vessel A	
256. The excess pressure inside one so	ap bubble is three	(50)	soap bubble, then the ratio
of their surface areas is	**************************************		
a) 1:9 b) 1:3		c) 3:1	d) 1:27
257. A concrete sphere of radius R has	a cavity of radius r		
of concrete and sawdust are respe	ectively 2.4 and 0.3	for this sphere to float wit	h its entire volume
submerged under water. Ratio of	mass of concrete to	mass of sawdust will be	
a) 8 b) 4		c) 3	d) Zero
258. The weight of an aeroplane flying	in the air is balance	ed by	
a) Vertical component of the thrus	st created by air cu	rrents striking the lower so	urface of the wings
 b) Force due to reaction of gases e 	56 5.53	1/7-19 S	
c) Upthrust of the air which will b			
 d) Force due to the pressure diff different air speeds on the surfa 		ne upper and lower surfac	es of the wings created by
259. A man is carrying a block of a cert	•		
and a bucket filled with water and How much load does he carry in h		the right hand. He drops t	he block into the bucket.
a) 9 kg b) 10 k	g	c) 11 kg	d) 12 kg
260. A horizontal pipe line carries water	er in streamline flo	w. At a point where the cro	ss-sectional area is 10 cm ²
the water velocity is $1~\mathrm{m}s^{-1}$ and p	ressure is 2000 Pa	. The pressure of water at a	another point where the
cross-sectional area is 5 cm^2 , is			

	a) 200 Pa	b) 400 Pa	c) 500 Pa	d) 800 Pa
261	. In Poiseuilli's method of o	determination of coefficient	t of viscosity, the physical c	quantity that requires
	greater accuracy in meas	urement is		
	a) Pressure difference		b) Volume of the liquid co	
	c) Length of the capillary		d) Inner radius of the cap	
262	- 77	earth with different termin	nal velocities having ratio 9	9:4. Then the ratio of their
	volume is	52 (52 (50 (50 (50 (50 (50 (50 (50 (50 (50 (50		CUSEC COMPACTS CONSTS
	a) 3:2	b) 4:9	c) 9:4	d) 27:8
263		raulic lift is four times of ra	dius of other arm. What for	rce should be applied on
	narrow arm to lift 100kg			
	a) 26.5 N	b) 62.5 N	c) 6.25 N	
264		phere of gold (density = 19		
	- " 이렇게 하다 하다 하다 없는 것이 되어 있다. 선생님 없는 사람이 하다 # # # # # # # # # # # # # # # # # #	minal speed of a sphere of	silver (density = 10.5 kg m	1 ⁻³) of the same size in the
	same liquid is			1
	a) 0.1 ms ⁻¹	b) 1.133 ms ⁻¹	Serial Commission of the	d) 0.2 ms ⁻¹
265		ne to form a single bubble.		
		If p is the atmospheric pres	ssure, and T is the surface t	ension of the soap solution
	the following relation is t		3.4.17.0.774.0	1) 2 1/1 1/7/1 0
200		b) $3pV - 4TA = 0$	445 Care 200 cm - March 200 cm - 200 cm - 200 cm	
266		nergy will be noticed when	a drop of radius R splits u	p into 1000 aropiets of
	radiusr, surface tensionT		-) 16 - P ² T	1) 26 - p2m
267	a) $4 \pi R^2 T$	b) $7 \pi R^2 T$		d) $36 \pi R^2 T$
267		as round holes with diamet		맛이 있었다고 하셨다. 얼마 보다 하나 되어 하면 맛있는데 하는데 맛있다면 하나 하셨다면서 하나 하다.
	그 사람이 없는 사람들은 얼마나가 아르자들이다. 그런 어떤 맛있다고 있어요? 그런 이번 맛이 맞을 때 사람이 없어요? 그렇게 되었다면 그 없었다.	, then the maximum height		illied in vessei without
		on of water is 75×10^{-3} Nm b) 0.3 cm		4) 2
260	a) 3 cm	b) 0.3 cm iquid is 5 Nm^{-1} . If a film is	,	d) 3 m
200	is about	iquiu is 5 Mili . II a lillil is	neid on a ring of area 0.02	iii , its totai surface ellergy
		b) 2.5×10^{-2} J	c) 2 × 10 ⁻¹ [d) 2 × 10 ⁻¹ I
260		atmosphere, has a leak in i		4 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1
209				
		f water. The velocity of the		
0.70	a) $\sqrt{gh/2}$	b) \sqrt{gh}	c) $\sqrt{2gh}$	d) $2\sqrt{gh}$
2/0	. There is a small bubble at	t one end and bigger bubble	e at other end of a rod. Wha	at will nappen?
	$A \longrightarrow B$			
		/		
	a) Smaller will grow until	l they collapse	b) Bigger will grow until	they collapse
	c) Remain in equilibrium		d) None of the above	
271	. The terminal velocity of s	pherical ball of radius a fal	ling through a viscous liqu	id is proportional to
	a) a	b) a ²	c) a^3	d) a^{-1}
272	. Water is filled up to a hei	ght h in a beaker of radius I	R as shown in the figure. Th	ne density of water is $ ho$, the
	surface tension of water i	s T and the atmospheric pr	essure is P_0 . Consider a ve	rtical section ABCD of the
	water column through a	diameter of the beaker. The	force on water on one side	e of this section by water or
	the other side of this sect	ion has magnitude		

a) $ 2P_0Rh + \pi R^2 \rho gh - 2R$	RT
-------------------------------------	----

b)
$$|2P_0Rh + R\rho gh^2 - 2RT|$$

c)
$$|P_0\pi R^2 + R\rho gh^2 - 2RT|$$

d)
$$|P_0\pi R^2 + R\rho gh^2 + 2RT|$$

273. A body of uniform cross-sectional area floats in a liquid of density thrice its value. The portion of exposed height will be

a) 2/3

b) 5/6

c) 1/6

d) 9/10

274. A wooden ball of density ρ is immersed in water of density ρ_0 to depth h and then released. The height Habove the surface of water upto which the ball jump out of water is

a) Zero

d) $\left(\frac{\rho_0}{\rho} - 1\right) h$

275. A monometer connected to a closed tap reads 4.5×10^5 pascal. When the tap is opened the reading of the monometer falls to 4×10^5 pascal. Then the velocity of flow of water is

a) $7 \, ms^{-1}$

b) $8 ms^{-1}$

d) $10 ms^{-1}$

276. Water rises to a height of 10 cm in a capillary tube and mercury falls to a depth of 3.42 cm in the same capillary tube. If the density of mercury and water are 135° and 0° respectively, the ratio of surface tension of water and mercury is

a) 1:0.15

b) 1:3

c) 1:6.5

277. Two drops of equal radius coalesce to form a bigger drop. What is ratio of surface energy of bigger drop to smaller one?

a) $2^{1/2}$: 1

b) 1:1

c) $2^{1/3}$: 1

d) None of the above

278. Two helium filled balloons are floating next to each other at the ends of strings tied to a cable. The facing surfaces of the balloons are separated by 1 to 2 cm. If you blow through the opening between the balloons,

a) They more away from each other

b) They move towards each other

c) They are unaffected

d) Nothing can be said about their separation

279. When the temperature increases, the viscosity of

a) gas decreases and liquid increases

b) gas increases and liquid decreases

c) gas and liquid increases

d) gas and liquid decreases

280. Under a pressure head, the rate of orderly volume flow of liquid through a capillary tube is Q. If the length of capillary tube were doubled and the diameter of the bore is halved, the rate of flow would become

b) 16 Q

281. One end of a uniform glass capillary tube of radius r = 0.025 cm is immersed vertically in water to a depth h=1 cm. The excess pressure in Nm⁻² required to blow an air bubble out of the tube (Surface tension of water = 7×10^{-2} Nm⁻¹, Density of water = 10^3 kg m⁻³, Acceleration due to gravity= 10ms^{-2})

a) 0.0048×10^5

b) 0.0066×10^5

c) 1.0048×10^5

d) 1.0066×10^5

282. A triangular lamina of area A and height h is immersed in a liquid of density ρ in a vertical plane with its base on the surface of the liquid. The thrust on the lamina is

a) $\frac{1}{2}A\rho gh$

b) $\frac{1}{3}A\rho gh$

c) $\frac{1}{6}A\rho gh$

d) $\frac{2}{3}A\rho gh$

283. In a capillary rise experiment, the water level rises to a height of 5 cm. If the same capillary tube is placed in water such that only 3 cm of the tube projects outside the water level, then

a) water will begin to overflow through the capillary

b) angle of contact decreases

20T.		a level less than 3 cm in a bubble of radius <i>R</i> of a	gas in a liquid of surface t	tension S is
	a) $\frac{2S}{R}$	b) $\frac{2R}{S}$	c) $\frac{2S}{R^2}$	d) $\frac{2R^2}{s}$
	Λ	J	A.	J
285.				f $10 \mathrm{cm s^{-1}}$. if the drops combin
	177	big size, then the terminal		
	a) 80 cms ⁻¹	b) 30 cms ⁻¹	c) 10 cms ⁻¹	d) 40 cms ⁻¹
286.	. Velocity of water in		1534	
	a) Same everywhere			lle and less near its banks
207	-	e and more near its banks		e bank to other bank
207.	a) energy is absorbe	mall droplets combine to fo	b) energy is liberate	ad.
	276 778	liberated nor absorbed		
288				on r, and dipped in water of
200.			anasa ang katawa na manasa na mata ang katawa ng katawa na mata	p_0 is the atmospheric pressure,
		water just below the water		
	a) $p_0 - \frac{1}{r}$	b) $p_0 + \frac{2S}{r}$	c) $p_0 - \frac{r}{r}$	d) $p_0 + \frac{4S}{r}$
289.	Consider the followi	ng equation of Berouilli's th	eorem.	~
	$P + \frac{1}{2}\rho V^2 + \rho g h = 1$	(constant)		
	4	/P are same as that of which	ch of the following	
	a) Thrust	b) Pressure	c) Angle	d) Viscosity
290				th water. Assuming that surface
				n be filled in vessel without
		ension of water = 7.5×10^{-1}		
	a) 0.3 cm	b) 3 mm	c) 3 cm	d) 3 m
291.		is a consequence of the law		
	a) Momentum	b) Mass	c) Energy	d) angular momentum
292.	Two solids A and B	loat in water. It is observed	that A floats with $\frac{1}{2}$ of its	body immersed in water and B
	- 4	lume above the water level		
	a) 4:3	b) 2:3	c) 3:4	d) 1:2
293.		each of radius r) merge to f		
	a) $2^{5/3} \pi r^2 T$	b) $4 \pi r^2 T$	c) $2\pi r^2 T$	d) $2^{8/3} \pi r^2 T$
294.	이 맛있다다 하는 이번 이번 경기 있는데 하느라 하나 하나 하나 하는데 없다면 하나 하나 나		acuum coalesce under iso	thermal conditions. The result
	bubble has a radius			
	a) $\frac{(a+b)}{2}$	b) $\frac{ab}{a+b}$	c) $\sqrt{a^2 + b^2}$	d) $a + b$
	4	a + b following cases will the liquing	id flow in a nine he most s	treamlined
2,0,		cosity and high density flow	kanan manan kalangan manan manan kalangan pengan kanan m Manan kanan ka	
		cosity and low density flow		
	D D D	osity and low density flowing		
	150 7	osity and high density flowi		
296.			어느 집에 사용하다 하는 집에 되었다. 그리는 그리는 그리는 그리는 것이다.	$ m m^{-3}$ and the density of water is
	1024 kg m ⁻³	, 1		ander – January II in de proposition de la company de la c
	a) 5%	b) 10%	c) 12%	d) 8%
				10^{-3} m. The water velocity as
297.				
297.	leaves the tap is 0.4	m/s. The diameter of the wa	ater stream at a distance 2	2×10^{-1} m below the tap is clo

a) 7.5×10^{-3} m	b) 9.6×10^{-3} m	c) 3.6×10^{-3} m	d) 5.0×10^{-3} m
298. A spherical drop of wa	ater has 1 mm radius. If the s	surface tension of water is 7	$70 imes 10^{-3} \; ext{Nm}^{-1}$, then the
difference of pressure	between inside and outside	of the spherical drop is	
a) 35 Nm ⁻²	b) 70 Nm ⁻²	c) 140 Nm ⁻²	d) Zero
299. A log of wood of mass	120kg floats in water. The	weight that can be put on r	aft to make it just sink, should
be (density of wood =	$600 kg/m^3$		
a) 80 <i>kg</i>		c) 60 <i>kg</i>	d) 30 <i>kg</i>
300. If a ball of steel densit	y $\rho = 7.8$ g cm ⁻³) attains a t	erminal velocity of 10cms ⁻	¹ when falling in a tank of
	riscosity $\eta_{\mathrm{water}} = 8.5 \times 10^{-4}$		elocity in glycerine
$(\rho = 12 \text{ g cm}^{-3}, \eta = 1$	3.2 Pa - s) would be nearly		
	b) $6.25 \times 10^{-4} \text{ cms}^{-1}$		
301. A cube floats in water	with 1/3rd parts is outside	the surface of water and it i	loats in liquid with 3/4th
	aid then the density of liquid	is	
a) 8/3	b) 2/3	c) 4/3	d) 5/3
	that of water is σ . What will		
a) $\frac{M}{\sigma - \rho}$	b) $\frac{\sigma - \rho}{M}$	c) $M \left[\frac{1}{2} - \frac{1}{2} \right]$	d) $\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]$
			then change in its volume is
a) $y - \frac{x}{m}$	b) $m(y-x)$	c) $\frac{m}{v} - \frac{m}{r}$	d) <i>my</i>
	are flowing in two tubes of e		efficients of viscosity of
그리는 아들은 아름다는 것은 얼마를 하게 되었다면 하면 하는데 없는 이 사람이 있는 그렇게 하셨다면 하셨다.	ne ratio of their densities is 1		10~ [10] (- 10] [10] (- 10]
a) 4:49	b) 49 : 4	c) 2:7	d) 7 : 2
	oubble becomes three times		
	c pressure to be 75 cm of H		
mercury, the depth of	an (2) an ann an a	,	
a) 5 m		c) 15 m	d) 20 m
	pipe of diameter 4 cm with a		
-	locity of water in the other p		
a) 3 ms^{-1}	b) 6 ms ⁻¹	c) 12 ms ⁻¹	d) 8 ms^{-1}
307. Two capillaries of leng	gth L and $2L$ and of radii R a	nd 2R respectively are conr	nected in series. The net rate
of flow of fluid throug	h them will be (Given, rate o	f the flow through single ca	pillary, $X = \pi p R^4 / 8 \eta L$)
a) $\frac{8}{9}X$	b) $\frac{9}{8}X$	c) $\frac{5}{7}X$	d) $\frac{7}{5}X$
	U	1	3
		section. At some point the p	pipe becomes narrow and the
	d. The speed of water is		
a) reduced to zero		b) decreased by a factor	r of 2
c) increased by a factor		d) unchanged	
	ius r and relative density 0.5	1 : - 1. : [- 1. : [- 1. :] - 1. : [- 1. :] - 1. : [- 1. :] - 1. : [- 1. :] - 1. : [- 1. :] - 1.	
	1904년 : 이 - Series 마시스 마시스 보고 있는 사람들이 보고 있는 것이 되었다. 프로그 시간	ball down so that whole of	it is just immersed in water
is : (where ρ is the de	nsity of water)	8	2
a) $\frac{5}{12}\pi r^4 \rho g$	b) $0.5 \rho rg$	c) $\frac{4}{3}\pi r^3 \rho g$	d) $\frac{2}{3}\pi r^4 \rho g$
12		3	ssure of water equals 2 cm of
	elocity of the flow is 32 cm s	하는 사람들은 - ^ 이번 100 100 100 100 100 100 100 100 100 10	and a series of the first of the contract of t
velocity of flow is 65 of		, what is the pressure at a	another point, where the
a) 1.02 cm of Hg	b) 1.88 cm of Hg	c) 2.42 cm of Hg	d) 1.45 cm of Hg
	e inside the first soap bubble		170
a) 1:3	b) 1:9	c) 1:7	d) 9:1
u) 1.0	V) 1.2	c) 117	**) ***

312.	12. A vessel of area of cross-section A has liquid to a height H . There is a hole at the bottom of vessel having area of cross-section a . The time taken to decrease the level from H_1 to H_2 will be				
	a) $\frac{A}{a}\sqrt{\frac{2}{g}}\left[\sqrt{H_1}-\sqrt{H_2}\right]$	b) $\sqrt{2gh}$	c) $\sqrt{2gh(H_1-H_2)}$	d) $\frac{A}{a}\sqrt{\frac{g}{2}}\left[\sqrt{H_1}-\sqrt{H_2}\right]$	
313.	The terminal velocity v of	f a spherical ball of lead of i	radius R falling through a vi	iscous liquid varies with R	
	such that				
	a) $\frac{v}{R}$ = constant	b) $vR = constant$	c) $v = constant$	d) $\frac{v}{R^2}$ = constant	
314.	If the velocity head of a st	ream of water is equal to 1	0 cm, then its speed of flow	$y = 10 \text{ ms}^{-2}$	
	a) 10 ms ⁻¹	b) 140 ms ⁻¹		d) 0.1 ms^{-1}	
315.			$^{-1}$. If the density of the wate	er is $1.2~{ m gcc}^{-1}$, then the	
	kinetic energy of each cub		S2 54 C SWATER	725 00 (886)(3)	
	a) 2.4 J	b) 24 J	c) 2.4 Kj	d) 4.8 kJ	
316.	of the balls, the balls	8	and a fast stream of air is p		
	a) Come nearer to each of		b) Move away from each o	other	
045	c) Remain in their origina		d) Move far away	6 1: P (0 1	
31/.			d in series with another tub		
		tube to that across the sec	tubes taken together is p, th	ien the ratio of pressure	
	a) 1:4	b) 1:1	c) 4:1	d) 2:1	
318		950	in radius respectively. If the		
510.			ed on the bottom of the bott		
	a) 30 N	b) 150 N	c) 300 N	d) 600 N	
319.		[- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	on the surface of a liquid. It		
			and liquid respectively, the		
	body will be instantaneou	0.70	(27) (5 25)		
	$\sqrt{2h}$	$\overline{2h}$ D	$\frac{1}{2h} \frac{d}{d}$	2h (d)	
	a) $\frac{2h}{g}$	b) $\frac{2h}{g} \cdot \frac{D}{d}$	c) $\int \frac{2h}{g} \cdot \frac{d}{D}$	d) $\int \frac{2h}{g} \left(\frac{d}{D-d} \right)$	
220	V 2	V	V 2	V 8 III	
320.	a) Concave	in a capillary glass tube, is b) Plane	c) Cylindrical	d) convex	
321	기상 해당 위한 기상 경기 가장 경기 시간 보다 보고 있다		s liquid. The value of its terr		
521.	proportional	us / is released in a viscous	s inquia. The value of its terr	imai velocity is	
	25	, m	\overline{m}	1960 41	
	a) $\frac{1}{r}$	b) $\frac{m}{r}$	c) $\sqrt{\frac{m}{r}}$	d) m only	
322.	Two stretched membrane	es of area 2 cm ² and 3 cm ²	are placed in a liquid at the	same depth. The ratio of	
	pressure on them is				
	a) 1:1	b) 2:3	c) 3:2	d) $2^2:3^2$	
323.		li's equation for fluid flow			
	a) Dynamic lift of an aero	plane	b) Viscosity meter		
004	c) Capillary rise		d) Hydraulic press		
324.			ater. It drains out through a		
	Then	es out in time t_1 , the next 5	L in further time t_2 and the	e last 5 L in further time t_3 .	
		b) $t_1 > t_2 > t_3$	c) $t_1 = t_2 = t_3$	d) t > t - t	
325			han water. A part of block is		
ULU.	whole of ice has melted, the	5	an water, is part of block is	outside the fiquid. Whell	
	a) Rise		b) Go down		
	c) Remain same		d) First rise then go down	I)	
	~~~~				

326. A 10 cm³ cube floats in water wit	th a height of 4 cm ³	remaining above the s	urface. The density of the
material form which the cube is r	made is		

- a)  $0.6 \,\mathrm{g}\,\mathrm{cm}^{-3}$
- b) 1.0 g cm⁻³
- c)  $0.4 \text{ g cm}^{-3}$
- d)  $0.24 \text{ g cm}^{-3}$
- 327. To what height should a cylindrical vessel be filled with a homogeneous liquid to make the force with which the liquid presses on the sides of the vessel equal to the force exerted by the liquid on the bottom of the vessel. If should be
  - a) Equal to the radius
- b) Less than radius
- c) More than radius
- d) Four times of radius
- 328. Choose the correct statement(s) for a cricket ball that is spinning clockwise through air
  - S1: Streamlines of air are symmetric around the ball
  - S2: The velocity of air above the ball relative to it is larger than that below the ball
  - S3: The velocity of air above the ball relative to it is smaller than that below the ball
  - S4: There is a net upward force on the ball
  - a) S1, S2 and S4
- b) S2 and S4
- c) S4 only
- 329. A vessel contains oil (density  $0.8~{\rm g~cm^{-3}}$ ) over mercury (density  $136~{\rm g~cm^{-3}}$ ). A homogenous sphere floats with half volume immersed in mercury and the other half in oil. The density of the material of the sphere in g cm⁻³ is
  - a) 12.8
- b) 7.2

- c) 6.4
- d) 3.3
- 330. Water rises to a height of 16.3 cm in a capillary of height 18 cm above the water level. If the tube is cut at a height of 12 cm in the capillary tube,
  - a) Water will come as a fountain from the capillary tube
  - b) Water will stay at a height of 12 cm in the capillary tube
  - c) The height of water in the capillary tube will be 10.3 cm
  - d) Water height flow down the sides of the capillary tube
- 331. A block is submerged in vessel filled with water by a spring attached to the bottom of the vessel. In equilibrium, the spring is compressed. The vessel now moves downwards with acceleration a(< g). The spring length



- a) Will become zero
- b) Will decrease but not zero
- c) Will increase
- d) May increase or decrease or remain constant
- 332. The cylindrical tube of spray pump has a cross-section of 8 cm², one end of which has 40 fine holes each of area  $10^{-8}$  m². If liquid flows inside the tube with a speed of 0.15 m min⁻¹, the speed with which the liquid is ejected through the hole is
  - a)  $50 \text{ ms}^{-1}$
- b)  $5 \text{ ms}^{-1}$
- c)  $0.05 \text{ ms}^{-1}$
- d)  $0.5 \text{ ms}^{-1}$
- 333. Soap bubbles can be formed floating in air by blowing soap solution in air, with the help of a glass tube but not water bubbles. It because
  - a) The excess pressure inside water bubble being more due to large surface tension
  - b) The excess pressure inside water bubble being less du large surface tension
  - c) The excess pressure inside water bubble being more due to large viscosity
  - d) The excess pressure inside water bubble being less due to less viscosity
- 334. Two capillaries of radii  $r_1$  and  $r_2$ , length  $l_1$  and  $l_2$  respectively are in series. A liquid of viscosity  $\eta$  is flowing through the combination under a pressure difference p. What is the rate of volume flow of liquid?

- a)  $\frac{\pi p}{8 \eta} \left(\frac{l_4}{r_1^4} + \frac{l_4}{r_2^4}\right)^{-1}$  b)  $\frac{8\pi p}{\eta} \left(\frac{l_1}{r_1^4} + \frac{l_2}{r_2^4}\right)$  c)  $\frac{\pi p}{8 \eta} \left(\frac{r_1^4}{l_1} + \frac{r_2^4}{l_2}\right)^{-1}$  d)  $\frac{\pi p}{8 \eta} \left(\frac{l_1}{r_1^4} + \frac{l_2}{r_2^4}\right)^{-1}$





- 335. The coefficient of viscosity for hot air is
  - a) Greater than the coefficient of viscosity of cold air
  - b) Smaller than the coefficient of viscosity for cold air
  - c) Same as the coefficient of viscosity for cold air
  - d) Increases or decrease depending on the external pressure
- 336. A water film is formed between two parallel wires of 10 cm length. The distance of 0.5 cm between the wires is increased by 1 mm. Which will be the work done?

(Surface tension of water =  $72 \text{ Nm}^{-1}$ )

- a) 288 erg
- b) 144 erg
- c) 72 erg
- d) 36 erg

- 337. Aerofils are so designed that the speed of air
  - a) On top side is more than on lower side
- b) On top side is less than on lower side

c) Is same on both sides

- d) Is turbulent
- 338. The height of a mercury barometer is 75 cm at sea level and 50 cm at the top of a hill. Ratio of density of mercury to that of air is 10⁴. The height of the hill is
  - a) 250 m
- b) 2.5 km
- c) 1.25 km
- d) 750 m
- 339. A rectangular plate 2m × 3m is immersed in water in such a way that its greatest and least depth are 6m and 4m respectively from the water surface. The total thrust on the plate is
  - a)  $294 \times 10^3 \text{ N}$
- b) 294 N
- c)  $100 \times 10^3 \text{ N}$
- d)  $400 \times 10^3$  N
- 340. Horizontal tube of non-uniform cross-section has radii of 0.1 m and 0.05 m respectively at M and N. For a streamline flow of liquid the rate of liquid flow is



- a) Changing continuously with time
- b) Greater at M than N

c) Greater at N than at M

- d) Same at Mand N
- 341. Surface tension of a soap solution is able of 2.0 cm diameter will be
  - a)  $7.6 \times 10^{-6} \,\pi$  J
- b)  $15.2 \times 10^{-6} \pi$  [
- c)  $1.9 \times 10^{-6} \pi$  [
- d)  $1 \times 10^{-4} \pi$  J
- 342. A cylinder containing water upto a height of 25 cm has a hole of cross-section 1/4 cm² in its bottom. It is counterpoised in a balance. What is the initial change in the balancing weight when water begins to flow out



a) Increase of 12.5 gm-wt

b) Increase of 6.25 gm-wt

c) Decrease of 12.5 gm-wt

- d) Decrease of 6.25 gm-wt
- 343. In making an alloy, a substance of specific gravity  $s_1$  and mass  $m_1$  is mixed with another substance of specific gravity  $s_2$  and mass  $m_2$ : then the specific gravity of the alloy is
  - $a)\left(\frac{m_1+m_2}{s_1+s_2}\right)$
- b)  $\left(\frac{S_1S_2}{m_1+m_2}\right)$

- 344. At which of the following temperatures, the value of surface tension of water is minimum?

- b) 25°C
- c) 50°C

- 345. Streamline flow is more likely for liquid with
  - a) high density and low viscosity

- b) low density and high viscosity
- c) high density and high viscosity
- d) low density and low viscosity
- 346. A body weight 50 g in air and 40 g in water. How much would it weigh in a liquid of specific gravity 1.5?
  - a) 30 g
- b) 35 g
- c) 65 g
- d) 45 g
- 347. Equal volumes of two immiscible liquids of densities  $\rho$  and 2  $\rho$  are filled in a vessel as shown in figure. Two small holes are made at depth h/2 and 3 h/2 from the surface of lighter liquid. If  $v_1$  and  $v_2$  are the velocities of efflux at these two holes, then  $v_1/v_2$  is







348. A mercury drop of radius 1.0 cm is sprayed in to 10⁶ droplets of equal size. The energy expended in this process is (surface tension of mercury is equal to  $32 \times 10^{-2} \text{ Nm}^{-1}$ )

a)  $3.98 \times 10^{-4}$  J

b)  $8.46 \times 10^{-4}$  J

c)  $3.98 \times 10^{-2}$  J

d)  $3.98 \times 10^{-2}$  J

349. Air is blown through a hole on a closed pipe containing liquid. Then the pressure will

a) Increase on sides

b) Increase downwards

c) Increase in all directions

d) Never increases

350. A block of wood weighs 4N in air and 3N when immersed in a liquid. The buoyant force in newton is

b) 1

c) 3/4

d) 4/3

351. Water rises in plant fibres due to

a) Capillarity

b) Viscosity

c) fluid pressure

d) Osmosis

352. The amount of work done in blowing a soap bubble such that its diameter increases from d to D is (S =surface tension of solution)

a)  $\pi(D^2 - d^2)S$ 

b)  $2\pi(D^2 - d^2)S$ 

c)  $4\pi(D^2 - d^2)S$ 

d)  $8\pi(D^2 - d^2)S$ 

353. Three tubes A, B and C are connected to a horizontal pipe in which liquid is flowing. The radii of pipe at the joints of A, B and C are 2 cm, 1 cm and 2 cm respectively. The height of liquid



a) In A is maximum

b) In A and B is equal

c) Is same in all three

d) In A and C is same

354. Two capillary of length L and 2L and of radii R and 2R are connected in series. The net rate of flow of fluid

through them will be (given rate of the flow through single capillary, X=

a)  $\frac{8}{9}X$ 

b)  $\frac{9}{8}X$ 

d)  $\frac{7}{5}X$ 

355. The heat evolved for the rise of water when one end of the capillary tube of radius r is immersed vertically into water is (Assume surface tension =T and density of water =  $\rho$ )

d) None of these

356. The height of the dam, in an hydroelectric power station is 10 m. In order to generate 1 MW of electric power, the mass of water (in kg) that must fall per second on the blades of the turbine is

a)  $10^6$ 

b)  $10^5$ 

c)  $10^3$ 

d)  $10^4$ 

357. A steel ball is dropped in oil then,

a) the ball attains constant velocity after some time b) the ball stops

c) the speed of ball will keep on increasing

d) None of the above

358. Water from a tap emerges vertically downwards with an initial speed of 1.0 ms⁻¹. The cross-sectional area of the tap is  $10^{-4}$  m². Assume that the pressure is constant throughout the stream of water and that the flow is steady. The cross-sectional area of the stream 0.15 m below the tap is

a)  $1.0 \times 10^{-5} \text{m}^2$ 

b)  $2 \times 10^{-5} \text{m}^2$ 

c)  $5 \times 10^{-5} \text{m}^2$ 

d)  $5 \times 10^{-4} \text{m}^2$ 

359. A tank 5m high is half filled with water and then is filled to the top with oil of density 0.85 gcm⁻³. The pressure at the bottom of the tank, due to these liquids is

a)  $1.85 \,\mathrm{g}\,\mathrm{dynecm}^{-3}$ 

b)  $89.25 \, \text{g dynecm}^{-3}$ 

c)  $462.5 \text{ g dynecm}^{-3}$ 

d)  $500 \text{ g dynecm}^{-3}$ 





360 A container of height 10	m which is onen at the ton	has water to its full height	Two small openings are	
360. A container of height 10 <i>m</i> which is open at the top, has water to its full height. Two small openings are made on the walls of the container one exactly at the middle and the other at the bottom. The ratio of the				
	ater comes out from the mi			
a) 2	b) $\frac{1}{2}$	c) √2	d) $\frac{1}{\sqrt{2}}$	
361. A layer of glycerine of th	nickness 1 mm is present be	etween a large surface area	and a surface area of 0.1 m ² .	
			locity of 1 ms ⁻¹ ? (Given that	
coefficient of viscosity =				
a) 70 N	b) 7 N	c) 700 N	d) 0.70 N	
362. Two solid pieces, one of		inum when immersed com	pletely in water have equal	
	pieces are weighed in air	21		
b) steel piece will weigh	um is half the weight of ste	eı		
c) they have the same w				
d) aluminium piece will				
363. A denotes the area to th		pth of an orifice of area of	cross-sectionA, below the	
	city of the liquid flowing thr	67		
W. S. 20	$ (A^2)$	- $(A)$	$A^2-a^2$	
a) $\sqrt{2 \text{ gh}}$	b) $\sqrt{2}$ gh $\sqrt{\left(\overline{A^2 - a^2}\right)}$	c) $\sqrt{2 gh} \sqrt{\left(\frac{A}{A-a}\right)}$	d) $\sqrt{2}$ gh $\sqrt{\left(\frac{A^2}{A^2}\right)}$	
364. A metal plate of area 10	1.50	7.7		
	o move it with a constant ve	elocity of 6 cms ⁻¹ . The coef	ficient of viscosity of the	
liquid is	1205		13.0.0	
a) 0.1 poise		c) 0.7 poise	d) 0.9 poise	
leakage of water from th		ea 10 cm² is made in the bo	ottom of the tank. The rate of	
a) $10^{-2}$ m ³ s ⁻¹		c) $10 \text{ m}^3 \text{s}^{-1}$	d) $10^{-2}$ m ⁻³ s ⁻¹	
366. An incompressible fluid				
- 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	flow direction. If the velocit	[2010] H.	10 m 14 m 20 m 16 m 16 m 1 m 16 m 16 m 16 m 16 m 16	
a) 2 <i>v</i>	b) <i>v</i>	c) v/2	d) 4 <i>v</i>	
367. A rectangular block is 5	cm $\times$ 5cm $\times$ 10cm in size.	The block is floating in wat	er with 5 cm side vertical. If	
	vertical, what change will o	occur in the level of water?		
a) No change				
b) It will rise				
c) It will fall	ending on the density of blo	nek		
5 (5)			instant when its acceleration	
is one-half that of the fre		ig in a tank of riquid at the	instante when its acceleration	
	and of liquid are $ ho$ and $\sigma$ res	pectively, and the viscosity	of the liquid is η)	
	b) $\frac{r^2g}{9\eta}(2\rho-\sigma)$			
			-	
369. A mercury drop of radiu	is 1 cm is broken into 10 ⁶ d	roplets of equal size. The w	vork done is $(S = 35 \times$	
$10^{-2} \text{ Nm}^{-1}$	13.10= 10-21		D 4.05 4.0-9 5	
	b) $4.35 \times 10^{-3}$ J		d) $4.35 \times 10^{-8}$ J	
370. The pressure at the bott a) Acceleration due to g	2011	b) Height of the liquid co	dumn	
c) Area of the bottom su	l	d) Nature of the liquid	Julili	
371. A metal ball immersed i			ient of cubical of cubical	
	s less than that of alcohol. A			
	ohol, it can be shown that			

- a)  $W_1 > W_2$  b)  $W_1 < W_2$
- c)  $W_1 = W_2$
- d)  $W_1 = 2W_2$
- 372. A streamline body with relative density  $\rho_1$  falls into air from a height  $h_1$  on the surface of a liquid of relative density  $\rho_2$ , where  $p_2 > p_1$ . The time of immersion of the body into the liquid will be



- a)  $\sqrt{2 h_1/g}$

- b)  $\sqrt{2 h_1/g} \times \frac{\rho_1}{\rho_2}$  c)  $\sqrt{\frac{2h_1}{g}} \times \frac{\rho_1}{\rho_2}$  d)  $\sqrt{\frac{2h_1}{g}} \times \frac{\rho_1}{(\rho_2 \rho_1)}$
- 373. The reading of spring balance when a block is suspended from it in air is 60N. This reading is changed to 40N when the block is submerged in water. The specific gravity of the block must therefore

- 374. In a turbulent flow, the velocity of the liquid in contact with the walls of the tube is
  - a) Zero

- b) maximum
- c) in between zero and maximum
- d) equal to critical velocity
- 375. Two solid spheres of same metal but of mass M and 8M fall simultaneously on a viscous liquid and their terminal velocities are v and nv, then value of n is
  - a) 16

b) 8

c) 4

- 376. A tank is filled with water upto a height H. Water is allowed to come out of a hole P in one of the walls at a depth h below the surface of water (see figure). Express the horizontal distance X in terms of H and h



- a)  $X = \sqrt{h(H-h)}$
- b)  $X = \sqrt{\frac{h}{2}(H h)}$  c)  $X = 2\sqrt{h(H h)}$  d)  $X = 4\sqrt{(H h)}$
- 377. An L-shaped glass tube is just immersed in flowing water such that its opening is pointing against flowing



water. If the speed of water current is v, then

- a) The water in the tube rises to height  $\frac{v^2}{2a}$
- b) The water in the tube rises to height  $\frac{g}{2v^2}$
- c) The water in the tube does not rise at all
- d) None of these
- 378. With the increase in temperature, the angle of contact
  - a) Decreases

b) Increases

c) Remains constant

- d) Sometimes increases and sometimes decreases
- 379. A vessel with water is placed on a weighing pan and it reads 0.8 gcc⁻¹ is sunk into the water with a pin of negligible volume as shown in figure keeping it sunk. The weighing pan will show a reading







a) 600 g

b) 632 g

c) 642 g

380. Typical silt(hard mud) particle of radius  $20\mu m$  is on the top of lake water, its density is  $2000 \text{ kg m}^{-3}$  and the viscosity of lake water is 1.0 mPa, density is  $1000 \text{ kg m}^{-3}$ . If the lake is still(has no internal fluid motion). The terminal speed with which the particle hits the bottom of the lake is ....... mms⁻¹

b) 0.77

c) 0..87

381. The pressure inside two soap bubble is 1.01 and 1.02 atm respectively. The ratio of their respective volume is

a) 2

b) 4

c) 6

d) 8

382. At a given place where acceleration due to gravity is  $g \text{ ms}^{-2}$ , a sphere of lead of density  $d \text{ kgm}^{-3}$  is gently released in a column of liquid of density  $\rho$  kg m⁻³. If  $d > \rho$ , the sphere will

a) Fall vertically with an acceleration g ms⁻²

b) Fall vertically with no acceleration

c) Fall vertically with an acceleration  $g\left(\frac{d-\rho}{d}\right)$ 

d) Fall vertically with an acceleration  $g\left(\frac{\rho}{d}\right)$ 

383. A liquid of density  $\rho$  is filled in a U-tube is accelerated with an acceleration a so that the height of liquid in its two vertical arms are  $h_1$  and  $h_2$  as shown in the figure. If l is the length of horizontal arm of the tube, the acceleration a is



b)  $\frac{g(h_1-h_2)}{2l}$  towards left d)  $\frac{g(h_1-h_2)}{l}$  towards left

a)  $\frac{g(h_1-h_2)}{2l}$  towards right c)  $\frac{g(h_1-h_2)}{l}$  towards right

384. Spherical ball of radius R are falling in a viscous fluid of viscosity  $\eta$  with a velocity v. The retarding viscous force acting on the spherical ball is

- a) directly proportional to R but inversely proportional tov
- b) directly proportional to both radius R and velocity v
- c) inversely proportional to both radius R and velocity v
- d) inversely proportional to R but directly proportional to velocity v

385. An aeroplane gets its upward lift due to phenomenon described by the

a) Archimedes' principle

b) Bernoulli's principle

c) Buoyancy principle

d) Pascal law

386. Water is flowing through a horizontal pipe of non-uniform cross-section. At the extreme narrow portion of the pipe, the water will have

a) Maximum speed and least pressure

b) Maximum pressure and least speed

c) Both pressure and speed maximum

d) Both pressure and speed least

387. Calculate the force of attraction between two parallel plates separated by a distance 0.2 mm after a water drop of mass 80 mg is introduced between them. The wetting is assumed to be complete. (Surface tension of water is  $0.07 \,\mathrm{Nm}^{-1}$ )

a) 0.14 N

b) 0.28 N

c) 0.42 N

d) 0.56 N





388. A viscous fluid is flow	ving through a cylinc	rical tube. The v	elocity distribution	n of the fluid is best
represented by the d	iagram		537	_ 140,000 910
			•	d) None of these
a)	b)	c)		3
	<u> </u>			<del>/</del> -

- 389. If there were no gravity, which of the following will not be there for fluid?
  - a) Viscosity

b) Surface tension

c) Pressure

- d) Archimedes' upward thrust
- 390. A hole is made at the bottom of the tank filled with water (density 1000 kg/ $m^3$ ). If the total pressure at the bottom of tank is 3 atm  $(1 \text{ atm} = 10^5 \text{ N/m}^2)$ , then the velocity of efflux is
  - a)  $\sqrt{200}$  m/s
- b)  $\sqrt{400}$  m/s
- c)  $\sqrt{500}$  m/s
- d)  $\sqrt{800}$  m/s
- 391. The U-tube has a uniform cross-section as shown in figure. A liquid is filled in the two arms upto heights  $h_1$ and  $h_2$  and then the liquid is allowed to move. Neglect viscosity and surface tension. When the level equalize in the two arms, the liquid will



- a) Be at rest
- b) Be moving with an acceleration of  $g\left(\frac{h_1-h_2}{h_1+h_2+2}\right)$
- c) Be moving with a velocity of  $(h_1 h_2)\sqrt{\frac{g}{\frac{2(h_1 + h_2 + 2)}{2}}}$
- d) Exert a net force to the right on the cube
- 392. A water drop of 0.05 cm3 is squeezed between two glass plates and spreads into area of 40 cm2. If the surface tension of water is 70 dyne cm⁻¹ then the normal force required to separate the glass plates from each other will be
  - a) 22.5 N
- b) 45 N
- c) 90 N
- d) 450 N
- 393. A bigger drop of radius R is converted into n smaller drops of radius r, the required energy is
  - a)  $(4 \pi r^2 n 4 \pi R^2)T$
- b)  $\left(\frac{4}{3}\pi r^2 n \frac{4}{3}\pi R^3\right)T$  c)  $(4\pi R^2 4\pi r^2)nT$
- d)  $(n4 \pi r^2 n4 \pi R^2)T$
- 394. Two capillary tubes of radii 0.2 cm and 0.4 cm are dipped in the same liquid. The ratio of heights through which liquid will rise in the tubes is
- b) 2:1
- c) 1:4
- d) 4:1

- 395. The flow of liquid is laminar or steam line is determined by
  - a) rate of flow of liquid

b) density of fluid

c) radius of the tube

- d) coefficient of viscosity of liquid
- 396. A barometer tube reds 76 cm of mercury. If the tube is gradually inclined at an angle of 60° with vertical, keeping the open end immersed in the mercury reservoir, the length of the mercury column will be
  - a) 152 cm
- b) 76 cm
- c) 38 cm
- d)  $38\sqrt{3}cm$
- 397. A film of water is found between two straight parallel wires of length 10 cm each separated by 0.2 cm. If their separation is increased by 1 mm, while still maintaining their parallelism, how much work will have to be done? (surface tension of water is  $7.2 \times 10^{-2} \text{ Nm}^{-1}$ )
  - a)  $7.22 \times 10^{-6}$  J
- b)  $1.44 \times 10^{-5}$  J
- c)  $2.88 \times 10^{-5}$  J
- d)  $5.76 \times 10^{-5}$  J
- 398. When a large bubble rises from the bottom of a lake to the surface. Its radius doubles. If atmospheric pressure is equal to that of column of water height H, then the depth of lake is
  - a) H

b) 2H

c) 7H

d) 8H



399.	A soap bubble A radius 0.0	03 and another bubble $B$ of	radius 0.04 m are brought	together so that the
	combined bubble has a co	mmon interface of radius 1	; then the value of $r$ is	
	a) 0.24 m	b) 0.48 m	c) 0.12 m	d) None of these
400.	Two rain drops of same ra	adii $^{\prime}r^{\prime}$ , falling with termina	l velocity $v'$ merge and for	m a bigger drops of radius
	R. The terminal velocity o	f the bigger drop is		
	a) $v^{\frac{R}{n}}$	VIII COLOR	3	D 2
	a) $v - r$	b) $v \frac{R^2}{r^2}$	c) v	d) 2 <i>v</i>
401.	A glass tube of uniform in	ternal radius <i>r</i> has a valve s	separating the two identica	al ends. Initially, the valve is
	in a tightly closed position	n. End 1 has a hemispherica	al soap bubble of radius r.	End 2 has sub-
	hemispherical soap bubbl	e as shown in figure. Just a	fter opening the valve.	
	T	ade register dan amadeksis etgi erdekin dekseren ete manen <del>in de</del> s erdeksek nada <del>da</del> n ular erdebaksi da.	Paragram apago Parasos i mantana <del>Ta</del> panga danan manga per penan	
	a) Air from and 1 flows to	wards and 2. No shangs in	b) Air from and 1 flavor to	wards and 2 Valums of the
				wards end 2. Volume of the
	the volume of the soap	bubbles	soap bubble at end 1 de	
	c) No change occurs		558	owards end 1. Volume of the
402	TI		soap bubble at end inc	
402.		n a capillary tube of length		
	가는 사람들은 사람들이 되었다. 사람들이 아름이 보면 보이고 있다면 보다 보다 보다 보다 되었다. 그 사람들이 되었다면 보다 되었다. 	and radius $2r$ for same pro		
102	a) 16 V	b) 9 V	c) 8 V	d) 2 <i>V</i>
403.		-sectional diameter 5 cm ca		
	7.07	be with a tross-sectional til	ameter 4 cm. the velocity o	f water through the smaller
	pipe is	1350 -1	1	d) 2.56 ms ⁻¹
101	a) 6.25 ms ⁻¹		c) 3.2 ms ⁻¹	
404.	-	Bare kept in a closed cham		
	The radii of bubbles is 0.0	$4 \text{Nm}^{-1}$ . Find the ratio $\frac{n_B}{n_A}$ , v	where $n_A$ and $n_B$ are the nur	nber of moles of air in
	bubbles A and B, respecti	vely. [Neglect the effect of a	gravity]	
	a) 4	b) 6	c) 7	d) 8
405.	A body floats in water wit	h one-third of its volume a	bove the surface of water. I	f it is placed in oil, it floats
		ove the surface of the oil. T	he specific gravity of the oi	lis
	a) $\frac{5}{3}$	b) $\frac{4}{3}$	c) $\frac{3}{2}$	d) 1
100	3	3	-	5-21-F 11/5-0
406.	The total weight of a piece	e of wood is 6 kg. In the floa	ating state in water its $\frac{1}{3}$ particles	rt remains inside the water.
	On this floating solid, wha	t maximum weight is to be	put such that the whole of	the piece of wood is to be
	drowned in the water?>			
	a) 12 kg	b) 10 kg	c) 14 kg	d) 15 kg
407.	The water flows from a ta	p of diameter 1.25 cm with	a rate of $5 \times 10^{-5} m^3 s^{-1}$ .	The density and coefficient
	of viscosity of water are 1	$0^3 kg \ m^{-3}$ and $10^{-3}$ Pas, re	spectively. The flow of wat	ter is
	a) Steady with Reynolds r	number 5100	b) Turbulent with Reynol	ds number 5100
	c) Steady with Reynolds r	number 3900	d) Turbulent with Reynol	ds number 3900
408.	Two liquid drops have dia	meters of 1 cm and 1.5 cm	. The ratio of excess of pres	ssure inside them is
	a) 1:1	b) 5:3	c) 2:3	d) 3:2
409.	A soap film is made by dip	pping a circular frame of ra	dius $\emph{b}$ in soap solution. A <code>b</code>	ubble is formed by blowing
	air with speed $v$ in the for	m of cylinder. The radius o	f the bubble formed $R \gg b$	so that the air is incident
	normally on the surface o	f bubble. Air stops after str	iking surface of soap bubbl	e. Density of air is $ ho$ . The
	radius R of the bubble wh	en the soap bubble separat	2332	707 3333
	a) $\frac{S}{\rho v^2}$	b) $\frac{4S}{\rho v^2}$	c) $\frac{Sb}{\rho v}$	d) $\frac{4 Sb}{\rho v^2}$
	$\rho v^2$	$\rho v^2$	ρυ	$\rho v^2$

CLICK HERE >>>

- 410. Under a constant pressure head, the rate of flow of liquid through a capillary tube is V. If the length of the capillary is doubled and the diameter of the bore is halved, the rate of flow would become
  - a) V/4

- d) V/32

- 411. The working of an atomizer depends upon
  - a) Bernoulli's theorem

b) Boyle's law

c) Archimedes principle

- d) Newton's law of motion
- 412. A fluid flows through a horizontal pipe having two different cross-sections of area A and 2 A. If the pressure at the thin cross-section is p and fluid velocity is v, the velocity and pressure at the thicker crosssection is (take the density of fluid as  $\rho$ )
  - a)  $\frac{v}{2}$ ,  $p + \frac{1}{2}\rho v^2$
- b)  $\frac{v}{4}$ ,  $p + \frac{3}{8}\rho v^2$  c)  $\frac{v}{2}$ ,  $p + \frac{3}{8}\rho v^2$  d) v,  $p + \frac{3}{4}\rho v^2$
- 413. A vertical U-tube of uniform inner cross section contains mercury in both sides of its arms. A glycerin (density =  $1.3 g/cm^3$ ) column of length 10 cm is introduced into one of its arms. Oil of density  $0.8 \ gm/cm^3$  is poured into the other arm until the upper surfaces of the oil and glycerin are in the same horizontal level. Find the length of the oil column. Density of mercury =  $13.6 \ g/cm^3$



- a) 10.4 cm
- b) 8.2 cm
- c) 7.2 cm
- d) 9.6 cm
- 414. A cylindrical vessel of height 500 mm has an orifice (small hole) at its bottom. The orifice is initially closed and water is filled in it up height H. Now the top is completely sealed with a cap and the orifice at the bottom is opened. Some water comes out from the orifice and the water level in the vessel becomes steady with height of water column being 200 mm. Find the fall in height (in mm) of water level due to opening of

(Take atmospheric pressure =  $1.0 \times 10^5 N/m^2$ , density of water =  $1000 kg/m^3$  and  $g = 10 m/s^2$ . Neglect any effect of surface tension)

- a) 5 mm
- b) 6 mm
- c) 2 mm
- d) 1 mm

- 415. Why the dam of water reservoir is thick at the bottom
  - a) Quantity of water increases with depth
- b) Density of water increases with depth
- c) Pressure of water increases with depth
- d) Temperature of water increases with depth



# **MECHANICAL PROPERTIES OF FLUIDS**

: ANSWER KEY :															
1)	a	2)	С	3)	c	4)	d	157)	a	158)	b	159)	c	160)	c
5)	a	6)	b	7)	c	8)	c	161)	c	162)	a	163)	a	164)	d
9)	b	10)	d	11)	b	12)	b	165)	c	166)	d	167)	c	168)	a
13)	b	14)	b	15)	c	16)	c	169)	c	170)	d	171)	C	172)	C
17)	b	18)	c	19)	a	20)	d	173)	d	174)	a	175)	b	176)	b
21)	b	22)	c	23)	b	24)	b	177)	c	178)	d	179)	d	180)	a
25)	d	26)	a	27)	c	28)	a	181)	a	182)	a	183)	b	184)	b
29)	C	30)	a	31)	b	32)	d	185)	d	186)	d	187)	b	188)	C
33)	d	34)	b	35)	d	36)	a	189)	a	190)	a	191)	C	192)	d
37)	c	38)	c	39)	b	40)	d	193)	d	194)	d	195)	b	196)	b
41)	d	42)	d	43)	a	44)	d	197)	b	198)	b	199)	c	200)	d
45)	d	46)	c	47)	d	48)	c	201)	b	202)	a	203)	d	204)	b
49)	d	50)	b	51)	C	52)	c	205)	d	206)	d	207)	d	208)	d
53)	C	54)	b	55)	b	56)	b	209)	d	210)	a	211)	d	212)	d
57)	a	58)	C	59)	a	60)	c	213)	C	214)	b	215)	b	216)	d
61)	b	62)	b	63)	c	64)	b	217)	d	218)	c	219)	c	220)	a
65)	d	66)	c	67)	b	68)	b	221)	a	222)	c	223)	c	224)	c
69)	b	70)	c	71)	a	72)	d	225)	d	226)	b	227)	a	228)	C
73)	C	74)	d	75)	b	76)	b	229)	a	230)	b	231)	b	232)	a
77)	C	78)	C	79)	b	80)	d	233)	a	234)	C	235)	C	236)	C
81)	C	82)	b	83)	C	84)	d	237)	b	238)	c	239)	b	240)	b
85)	C	86)	a	87)	d	88)	a	241)	a	242)	d	243)	d	244)	d
89)	d	90)	С	91)	b	92)	b	245)	d	246)	c	247)	b	248)	d
93)	C	94)	c	95)	C	96)	c	249)	c	250)	d	251)	C	252)	a
97)	b	98)	C	99)	d	100)	c	253)	C	254)	C	255)	C	256)	a
101)	d	102)	C	103)	a	104)	d	257)	b	258)	d	259)	C	260)	C
105)	d	106)	c	107)	c	108)		261)	d	262)	d	263)	b	264)	a
109)	a	110)	b	111)	a	112)	d	265)	d	266)	d	267)	a	268)	c
113)	d	114)	a	115)	C	116)		269)	c	270)	b	271)	b	272)	b
117)	b	118)	d	119)	a	120)	- 1	273)	a	274)	d	275)	d	276)	c
121)	b	122)	d	123)	a		- 1	277)	c	278)	b	279)	b	280)	d
125)	a	126)	a	127)	d	128)		281)	b	282)	b	283)	d	284)	a
129)	a	130)	d	131)	c	132)	- 1	285)	d	286)	b	287)	b	288)	a
133)	d	134)	a	135)	b	18 18 18 18 18 18 18 18 18 18 18 18 18 1		289)	c	290)	C	291)	c	292)	b
137)	C	138)	d	139)	C	-	- 1	293)	d	294)	c	295)	b	296)	b
141)	C	142)	a	143)	d	144)	- 1	297)	C	298)	C	299)	a	300)	b
145)	b	146)	b	147)	d			301)	a	302)	C	303)	c	304)	a
149)	d	150)	d	151)	a	152)	- 1	305)	c	306)	a	307)	a	308)	C
153)	a	154)	a	155)	c	156)	a	309)	a	310)	b	311)	C	312)	a

313)	d	314)	c	315)	c	316)	a	369)	a	370)	c	371)	b	372)	d	
317)	a	318)	C	319)	d	320)	d	373)	d	374)	d	375)	C	376)	C	
321)	b	322)	a	323)	a	324)	a	377)	a	378)	a	379)	d	380)	c	
325)	b	326)	a	327)	a	328)	b	381)	a	382)	c	383)	c	384)	b	
329)	b	330)	b	331)	c	332)	b	385)	b	386)	a	387)	b	388)	c	
333)	a	334)	d	335)	a	336)	b	389)	d	390)	b	391)	c	392)	b	
337)	a	338)	b	339)	a	340)	c	393)	a	394)	b	395)	a	396)	a	
341)	b	342)	С	343)	c	344)	d	397)	b	398)	c	399)	c	400)	b	
345)	d	346)	b	347)	a	348)	c	401)	b	402)	c	403)	a	404)	b	
349)	c	350)	b	351)	a	352)	b	405)	b	406)	a	407)	b	408)	d	
353)	d	354)	a	355)	c	356)	d	409)	b	410)	d	411)	a	412)	c	
357)	a	358)	c	359)	c	360)	d	413)	d	414)	b	415)	c	10.755		
361)	b	362)	a	363)	b	364)	a	157/		50		17.0				
365)	а	366)	d	367)	а	368)	а									



# MECHANICAL PROPERTIES OF FLUIDS

# : HINTS AND SOLUTIONS :

Upthrust is independent of all factors of the body such as its mass, size, density etc, except the volume of the body inside the fluid. Fraction of volume immersed in the liquid $V_{in} = \left(\frac{\rho}{\sigma}\right) V$  ie, it depends upon the densities of the block and liquid. So, there will be no change in it if system moves upward or downward with constant velocity or some acceleration. Therefore, the upthrrust on the body due to liquid is equal tto the weight of the body in air.

## 3

When terminal velocity v is reaching, then  $F = 2 \times 10^{-5} v = \frac{4}{3} \pi r^3 \rho g$  $2 \times 10^{-5} v = \frac{4}{3} \times \frac{22}{7} \times (1.5 \times 10^{-3})^3 \times 10^3 \times 10^3$ 

On solving,  $v = 7.07 \text{ms}^{-1} \approx 7 \text{ms}^{-1}$ 

#### 4 (d)

Since, weight of bag with water is equal to the weight of water displaced, hence reading of spring balance is zero

#### 5 (a)

 $F = 6 \pi \eta r v$  $= 6 \times 3.14 \times (18 \times 10^{-5}) \times 0.03 \times 100$  $= 101.73 \times 10^{-4} \text{ dyne}$ 

#### 6

If  $A_0$  in the area orifice at the bottom below the free surface and A that of vessel, then time ttaken to be emptied the tank is given as

$$t = \frac{A}{A_0} \sqrt{\frac{2H}{g}}$$

$$\therefore \frac{t_1}{t_2} = \sqrt{\frac{H_1}{H_2}}$$

$$\implies \frac{t}{t_2} = \sqrt{\frac{H_1}{H_1/2}}$$

$$\Rightarrow \frac{t}{t_2} = \sqrt{2}$$

$$\therefore \quad t_2 = \frac{t}{\sqrt{2}} = \frac{10}{\sqrt{2}}$$

 $=5\sqrt{2}=7$ min

According to Bernoulli's Theorem;  $p = \frac{1}{2}\rho v^2$ =constant. Near the ends, the velocity of liquid is higher so that pressure is lower as a result the liquid rises at the sides to compensate for this drop of pressure

$$ie, \rho g h = \frac{1}{2} \rho v^2 = \frac{1}{2} \rho r^2 \omega^2$$

Hence, 
$$h = \frac{r^2 \omega^2}{2g} = \frac{r^2 (2\pi v)^2}{2g} = \frac{2\pi^2 r^2 v^2}{g}$$
$$= \frac{2 \times \pi^2 \times (0.05)^2 \times 2^2}{9.8}$$

$$=\frac{2 \times \pi^2 \times (0.05)^2 \times 2^2}{9.8}$$

$$= 0.02 \text{ m} = 2 \text{ cm}$$

#### 8 (c)

Depth of p below the free surface of water in the vessel= (1 + h). Since the liquid exerts equal pressure in all direction at one level, hence the pressure at  $p = (H - h) \rho g$ 

### 9

Bulk modulus,  $B = -V_0 \frac{\Delta p}{\Delta V} \Rightarrow \Delta V = -V_0 \frac{\Delta p}{R}$ 

$$\Rightarrow V = V_0 \left[ 1 - \frac{\Delta p}{B} \right]$$

$$\therefore$$
 Density,  $\rho = \rho_0 \left[ 1 - \frac{\Delta p}{B} \right]^{-1} = \rho_0 \left[ 1 + \frac{\Delta p}{B} \right]$ 

Where,  $\Delta p = p - p_0 = h \rho_0 g$ 

= pressure difference between depth and surface

$$\therefore \rho = \rho_0 \left[ 1 + \frac{\rho_0 g y}{B} \right] \text{ (As } h = y)$$

### 12 (b)

Since density of iron is more than that of marble, the volume of iron is less than that of marble for the given mass. The up thrust of water on iron will be less than that on marble. Due to which iron cube will weigh more



### 13 (b)

For an incompressible liquid equation of

Av = constant

or 
$$A \propto \frac{1}{v}$$

therefore, at the wider end speed will be low and at narrow end speed will be high.

## 15 (c)

Let the total volume of ice-berg is *V* and its density is  $\rho$ . If this ice-berg floats in water with volume  $V_{in}$  inside it then  $V_{in}\sigma g = V\rho g \Rightarrow V_{in} =$  $\left(\frac{\rho}{\sigma}\right)V\left[\sigma=\text{density of water}\right]$ 

$$\Rightarrow V_{out} = V - V_{in} = \left(\frac{\sigma - \rho}{\sigma}\right)V$$

$$\Rightarrow \frac{V_{out}}{V} = \left(\frac{\sigma - \rho}{\sigma}\right) = \frac{1000 - 900}{1000} = \frac{1}{10}$$

# $\therefore V_{out} = 10\% \text{ of } V$

### 16 (c)

Terminal velocity of the ball through a viscous

$$v = \frac{2}{9} \times \frac{g}{\eta} (\rho - \sigma) r^2$$
$$v = \frac{2}{9} \times \frac{g}{\eta} (\rho) r^2$$

because viscous medium of negligible density

$$v = \frac{2}{9} \times \frac{g}{\eta} \times \frac{m}{\frac{4}{3}\pi r^3} \times r^2 \qquad \left( \therefore e = \frac{m}{\frac{4}{3}\pi r^3} \right)$$
or 
$$v = \frac{2}{9} \times \frac{g}{\eta} \times \frac{m}{\frac{4}{3}\pi r^3}$$

$$\Rightarrow v = \frac{1}{r}$$

For the second ball

$$v \propto \frac{1}{2r}$$

Because radius of second ball is twice that of the

$$\frac{v}{v} = \frac{2r}{r} \text{ or } v' = \frac{v}{2}$$

$$\frac{dv}{dx} = \frac{8}{0.1} = 80s^{-1}$$

Here, mass of block, m = 1kg

Volume of a block,  $V = 3.6 \times 10^{-4} m^3$ 

Tension in the string,  $T = mg = mg - V\rho_{water}g$ 

 $\therefore$  Decrease in the tension of string = T - T

$$= mg - [mg - V\rho_{water}g] = V\rho_{water}g$$

$$= (3.6 \times 10^{-4} m^3) \times (10^3 kgm^{-3}) \times (10ms^{-2})$$
$$= 3.6 N$$

#### 20 (d)

We know that surface tension is related to work

$$W = T \times \Delta A$$

Since, surface area of sphere is

 $4\pi R^2$  and there are two free surfaces, we have

$$W = T \times 8R^2 \qquad \dots \dots (i)$$

and volume of sphere  $=\frac{4}{3}\pi R^3$ 

$$ie, V = \frac{4}{3}\pi R^3$$

$$\Rightarrow R = \left(\frac{3V}{4\pi}\right)^{1/3} \qquad \dots (ii)$$

From Eqs. (i) and (ii), we get

$$W = T \times 8\pi \times \left(\frac{3V}{4\pi}\right)^{2/3}$$

$$\Rightarrow W \propto V^{2/3}$$

$$\therefore W_1 \propto V_2^{2/3}$$
and  $W_2 \propto V_2^{2/3}$ 

$$\frac{W_2}{W_1} = \left(\frac{2V_1}{V_1}\right)^{2/3}$$

$$\Rightarrow W_2 = 2^{2/3}W_1 = 4^{1/3}W$$

#### (b) 21



If the level in narrow tube goes down by  $h_1$  then in wider tube goes up to  $h_2$ 

Now, 
$$\pi r^2 h_1 = \pi (nr)^2 h_2 \Rightarrow h_1 = n^2 h_2$$

Now, pressure at point A =pressure at point B

$$h\rho g = (h_1 + h_2)\rho' g$$

$$\Rightarrow h = (n^2 h_2 + h_2)s \ (\text{As } s = \frac{\rho'}{\rho}) \Rightarrow h_2 = \frac{h}{(n^2 + 1)s}$$

#### 22

Velocity of ball when it strikes the water surface  $v = \sqrt{2gh}$ 

Terminal velocity of ball inside the water

$$v = \frac{2}{9}r^2g\left(\frac{\rho-1}{\eta}\right)$$
 ...(ii)

Equating (i) and (ii) we get  $\sqrt{2gh} = \frac{2}{9} \frac{r^2 g}{n} (\rho - 1)$ 

$$\Rightarrow h = \frac{2}{81}r^4 \left(\frac{\rho - 1}{n}\right)^2 g$$

As solid is floating in liquid, so weight of solid body = weight of liquid displaced by immersed part of the body ie, VD g = v d g



Or v/V = D/d

25 (d)

Let V be the the volume of the brass block weight of brass block =  $V \rho_B g$ 

Weight of brass block when immersed in liquid =  $V \rho_B g - V \rho_L g$ . If A is the area of cross-section of steel wire, then

$$Y = \frac{V\rho_B g}{A} \times \frac{L}{l} = \frac{(V\rho_B g - V\rho_L g)}{A} \times \frac{L}{l'}$$

$$Or \frac{l}{l'} = \frac{\rho_B}{\rho_B - \rho_L}$$

26 (a)

The excess pressure inside a liquid drop is

$$\Delta p = \frac{2T}{r}$$
or  $\Delta p \propto \frac{T}{r}$ 



The excess pressure inside a liquid drop is directly proportional to surface tension (T) and inversely proportional to radius (r).

27 (c)

As the both points are at the surface of liquid and these points are in the open atmosphere. So both point possess similar pressure and equal to  $1\ atm$ . Hence the pressure difference will be zero

28 (a)

Total pressure (p) = atmospheric pressure  $(p_0)$  + pressure due to water column in tank (p')  $\therefore p' = p - p_0 = 3 - 1 = 2$  atmosphere

Or  $h \times 10^3 \times 10 = 2 \times 10^5$  or h = 20 m  $v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = \sqrt{400}$  ms⁻¹

29 (c)

Time taken 
$$t = \sqrt{\frac{2h}{g}}$$

Time taken for the level of water to fall from h to h/2

$$t_1 = \sqrt{\frac{2}{g}} \left[ \sqrt{h_1} - \sqrt{h_2} \right] = \sqrt{\frac{2}{g}} \left[ \sqrt{h} - \sqrt{\frac{h}{2}} \right]$$
$$= \sqrt{\frac{2h}{g}} \left( 1 - \frac{1}{\sqrt{2}} \right)$$

Similarly, time taken for the level of water to fall from h/2 to 0.

$$t_2 = \sqrt{\frac{2}{g}} \left[ \sqrt{\frac{h}{2}} - 0 \right]$$

$$\Rightarrow t_2 = \sqrt{\frac{2h}{g}} \cdot \frac{1}{\sqrt{2}}$$

$$\therefore \frac{t_1}{t_2} = \frac{\sqrt{\frac{2h}{g}} \left(1 - \frac{1}{\sqrt{2}}\right)}{\sqrt{\frac{2h}{g}} \frac{1}{\sqrt{2}}}$$

$$= \frac{\left(\sqrt{2} - 1\right)}{1/\sqrt{2}} = \sqrt{2} - 1$$

30 (a)

Apparent weight =  $V(\rho - \sigma)g$ =  $5 \times 5 \times 5(7 - 1)g = 6 \times 5 \times 5 \times 5gf$ 

31 (b)

The net force on the tank  $F = 2A\rho gh$ 

Where A = area of cross - section of the hole $\rho = \text{density of water}$ 

h =vertical distance between the holes

 $F = 2 \times 0.01 \times 1000 \times 10 \times 1 = 200$ N

32 **(d** 

Shearing stress = 
$$\eta \left(\frac{dv}{dx}\right)$$
  
=  $10^{-3} \left(\frac{10}{20}\right) = 0.5 \times 10^{-3} \text{Nm}^{-2}$ 

33 (d)

If we have m gram of ice which is a floating in a liquid of density 1.2 and 9 L will displaces volume  $\frac{m_{cc}}{1.2} < m_{cc}$ . After melting it occupies  $m_{cc}$ .

35 (d)

According to equation of continuity av = constant. As v increases, a decreases

36 (a)

Terminal velocity,  $v = \frac{2r^2(\rho - \rho_0)g}{9 \eta}$ 

$$ie, v \propto r^2$$
  

$$\therefore \frac{v_1}{v} = \frac{r_1^2}{r^2}$$

Or 
$$v_1 = v \left(\frac{r_1}{r}\right)^2$$
  
=  $20 \left(\frac{1}{2}\right)^2 = 5 \text{ cms}^{-1}$ 

37 (c)

For the floatation  $V_0 d_0 g = V_{in} d g \Rightarrow V_{in} = V_0 \frac{d_0}{d}$  $\therefore V_{out} = V_0 - V_{in} = V_0 - V_0 \frac{d_0}{d} = V_0 \left[ \frac{d - d_0}{d} \right]$ 

$$\Rightarrow \frac{V_{out}}{V_0} = \frac{d - d_0}{d}$$

38 (c)

Level of water will remain unchanged.

39 **(b)** 

Effective weight W' = m(g - a) which is less than actual weight mg, so the length of spring decreases

40 (d)

Let  $M_0$  = mass of body in vacuum Apparent weight of the body in air = Apparent weight of standard weight in air

⇒ Actual weight – upthrust due to displaced air

$$\Rightarrow M_0 g - \left(\frac{M_0}{d_1}\right) dg = Mg - \left(\frac{M}{d_2}\right) dg \Rightarrow M_0$$

$$= \frac{M\left[1 - \frac{d}{d_2}\right]}{\left[1 - \frac{d}{d_1}\right]}$$

41 (d)

The height (h) to which water rises in a capillary tube is given by

$$h = \frac{2T\cos\theta}{r\rho g}$$

where  $\theta$  is angle of contact, r the radius,  $\rho$  the density and g acceleration due to gravity.

When lift moves down with constant acceleration, height is less than h, because effective value of acceleration due to gravity increases hence h decreases.

42 (d)

According to equation of continuity



$$A_1 \nu_1 = A_2 \nu_2$$

$$\therefore v_2 = \frac{A_1 v_1}{A_2} = \frac{10cm^2 \times 1ms^{-1}}{5cm^2} = 2ms^{-1}$$

For a horizontal pipe, according to Bernoulli's theorem

$$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2$$

$$P_2 = P_1 + \frac{1}{2}\rho(v_1^2 - v_2^2)$$

$$= 2000 + \frac{1}{2} \times 10^3 \times (1^2 - 2^2)$$
[: Density of water,  $\rho = 10^3 \ kg/m^3$ ]
$$= 2000 - \frac{1}{2} \times 10^3 \times 3 = 2000 - 1500 = 500 \text{Pa}$$

43 (a

Terminal velocity  $v \propto r^2$ 

or 
$$\frac{v^1}{v^2} = \left(\frac{r_1}{r_2}\right)^2 = \left[\left(\frac{r_1}{r_2}\right)^3\right]^{\frac{2}{3}}$$
  
 $v_1 = (M_1)^{\frac{2}{3}}$ 

$$\frac{v_1}{v_2} = \left(\frac{M_1}{M_2}\right)^{2/3}$$

$$\frac{0.5}{v_2} = \left(\frac{20 \times 10^{-3}}{54 \times 10^{-2}}\right)^{2/3}$$

$$\frac{0.5}{v_2} = \frac{1}{9}$$
  $\Rightarrow$   $v_2 = 4.5 \text{ ms}^{-1}$ 

44 (d)

When we move from centre to circumference, the velocity of liquid goes on decreasing and finally becomes zero

45 (d)

As cross-section areas of both the tubes A and C are same and tube is horizontal. Hence according to equation of continuity  $v_A = v_C$  and therefore according to Bernoulli's theorem  $P_A = P_C$  i. e. height of liquid is same in both the tubes A and C

46 (c)

If the length of the tube h' is less than h, is found that the liquid dose not overflow. In a tube of insufficient length, the liquid rises upto the top of the tube and increases the radius of curvature, of its mentiscus to a value R, so that

$$R'h' = Rh$$



*ie*, smaller the length (h') of the tube, greater will be the radius of curvature (R') of the meniscus, but the liquid will never overflow.

47 (d

As, 
$$\frac{4}{3}\pi R^3 = 1000 \times \frac{4}{3}\pi r^3$$

R = 10r

Surface energy of small drop  $E_1 = S \times 4\pi r^2$ Surface energy of large drop  $E_2 = S \times 4\pi (10 \ r)^2$  $E_1/E_2 = 1/100$ 

48 (c)

Surface energy  $U = S \times 2 \times 4\pi R^2$ (As there are 2 surfaces in soap bubble)  $U = 4.5 \times 10^{-2} \times 8\pi \times (2.1 \times 10^{-2})^2$  $= 4.93 \times 10^{-4}$  J





Given, 
$$l_1 = l_2 = 1$$
, and  $\frac{r_1}{r_2} = \frac{1}{2}$ 

$$V = \frac{\pi P_1 r_1^4}{8\eta l} = \frac{\pi P_2 r_2^4}{8\eta l} \Rightarrow \frac{P_1}{P_2} = \left(\frac{r_2}{r_1}\right)^4 = 16 \Rightarrow P_1$$

$$= 16P_2$$

Since both tubes are connected in series, hence pressure difference across combination

50 **(b)** 

Impact speed

$$= \sqrt{2gh} = \sqrt{2 \times 9.8 \times 1200} = 153.3 \times \frac{18}{5}$$
$$\approx 550 \, km/h$$

Weight of wax in air,

$$W_a = 18.03 \text{ g}$$

Weight of metal piece in water= 17.03 g

Weight of metal piece and wax in water = 15.23 g Weight of wax in water

$$W_w = 15.23 - 17.03 = -1.8g$$

Therefore, specific gravity of wax

weight of wax in air - weight of wax in water  $=\frac{18.03}{18.03 - (-1.8)} = \frac{18.03}{19.83}$ 

52 (c)

Here, 
$$v_1 = \sqrt{2g(h+x)}$$
;  $v_2 = \sqrt{2gx}$ 



Let a = area of cross-section of each hole  $\rho = \text{density of the liquid}$ 

The momentum of the liquid flowing out per second through lower hole = mass× velocity  $= av_1\rho \times v_1 = a\rho v_1^2$ 

The force exerted on the lower hole towards left  $= a \rho v_1^2$ 

Similarly, the force exerted on the upper hole towards right =  $a \rho v_2^2$ 

Net force on the tank,  $F = a \rho(v_1^2 - v_2^2)$  $= a \rho [2g(h+x) - 2gx] = 2a \rho gh$ 

 $ie, F \propto h$ 

53 (c)

The excess pressure inside the soap bubble is inversely proportional to radius of soap bubble  $ie, p \propto 1/r, r$  being radius of soap bubble. If follows that pressure inside a smaller bubble is greater than that inside a bigger bubble. Thus, if these two bubbles are connected by a tube, air will flow from smaller bubble grows at the expense of the smaller one.

54 (b)

In case of soap bubble

$$W = T \times 2 \times \Delta A$$

$$= 0.03 \times 2 \times 40 \times 10^{-4} = 2.4 \times 10^{-4} \text{ J}$$

55



According to Bernoulli's theorem

$$P_B + h\rho g = P_A + \frac{1}{2}\rho v_A^2 \quad [\text{As } v_A >> v_B]$$

$$3.10P + 53 \times 660 \times 10 = P + \frac{1}{2} \times 660 v_A^2$$

$$\Rightarrow 2.1 \times 1.01 \times 10^5 + 3.498 \times 10^5 = \frac{1}{2} \times 660 \times v_A^2$$

$$\Rightarrow 5.619 \times 10^5 = \frac{1}{2} \times 660 \times v_A^2$$

$$v_A = \sqrt{\frac{2 \times 5.619 \times 10^5}{660}} = 41 \, m/s$$

56 **(b)**

$$V = \frac{P\pi r^4}{8\eta l} \Rightarrow \frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^4$$

$$\Rightarrow V_2 = V_1 \left(\frac{110}{100}\right)^4 = V_1 (1.1)^4 = 1.4641V$$

$$\frac{\Delta V}{V} = \frac{V_2 - V_1}{V} = \frac{1.4641V - V}{V} = 0.46 \text{ or } 46\%$$

57 (a)

When a highly soluble salt (like sodium chloride) is dissolved in water, the surface tension of water increases

58

Since, up thrust  $(F) = V \sigma g \ i.e. F \propto V$ 

59

When body (sphere) is half immersed, then upthrust = weight of sphere

$$\Rightarrow \frac{V}{2} \times \rho_{\text{liq}} \times g = V \times \rho \times g :: \rho = \frac{\rho_{\text{liq}}}{2}$$

When body (sphere) is fully immersed then, Upthrust = wt. of sphere + wt. of water poured insphere

$$\Rightarrow V \times \rho_{\text{liq}} \times g = V \times \rho \times g + V' \times \rho_{\text{liq}} \times g$$
$$\Rightarrow V \times \rho_{\text{liq}} = \frac{V \times \rho_{\text{liq}}}{2} + V' \times \rho_{\text{liq}} \Rightarrow V' = \frac{V}{2}$$

60 (c)



Figure 3 is stream lined, so air resistance of it will 65 be minimum. For figure 1 surface area is maximum, so air resistance for it is maximum. Hence, correct sequence is 3<2<1.

## 61 **(b)**

From Archimedes' principle weight of water displaced is equal to weight of stone. The level will fall because when the large stone was in the boat, volume of water displaced is equal to volume of large stone. But when the stone is dropped in the lake, it displaces volume of water equal to its volume which is less than in the previous case.

As the flask floats in water in less than half filled with water, it will float just fully submerged when half filled. In the situation,

mass of flask +mass of water in it=  $V\sigma$ 



$$ie, 390 + 250 = V \times 1$$
 (as  $\sigma = 1 \text{ g cc}^{-1}$ )

ie, outer of volume of flask

$$V = 640 \, \text{cc}$$

Now, as inner volume of flask is given to be 500 cc, so the volume of the material of flask = 640 -500 = 140 cc. But as mass of flask is 390 g, so density of material of flask

$$\rho = \frac{m}{v} = \frac{390}{140} = 2.8 \text{ g cc}^{-1}$$

Volume of liquid flowing at first point =  $A_1v_1$ . Similarly, volume of liquid flowing at second point  $= A_2 v_2$ 

From equation of continuity,

$$A_1 v_1 = A_2 v_2$$
  
or  $\frac{v_1}{v_2} = \frac{A_2}{A_1}$ 

The volume of liquid displaced by floating ice  $V_D = \frac{M}{\sigma_L}$ 

Volume of water formed by melting ice,  $V_F = \frac{M}{\sigma_W}$ 

If 
$$\sigma_L > \sigma_W$$
, then  $\frac{M}{\sigma_L} < \frac{M}{\sigma_W}$  i. e.  $V_D < V_F$ 

i.e. volume of liquid displaced by floating ice will be lesser than water formed and so the level if liquid will rise

Terminal velocity of single drop,  $v = 3.75 \,\mathrm{cm}\,\mathrm{s}^{-1} = 3.75 \times 10^{-2} \,\mathrm{m}\,\mathrm{s}^{-1}$ Terminal velocity of the big drop

$$V = n^{\frac{2}{3}}v$$
  
=  $(8)^{2/3} \times 3.75 \times 10^{-2}$   
=  $4 \times 3.75 \times 10^{-2} = 15 \times 10^{-2} \text{ms}^{-1}$ 

## 66 (c)

Soap solution has lower surface tension, T as compared to pure water and capillary rise h = $\frac{2T\cos\theta}{\rho rg}$ , so h is less for soap solution.

## 67

l Will decreases because the block moves up. h will decreases because the coin will displace the volume  $(V_1)$  of water equal to its own volume when it is in water whereas when it is on the block it will displace the volume of water  $(V_2)$ whose weight is equal to weight of coin and science density of coin is greater than the density of water,

$$V_1 < V_2$$

## 68 **(b)**

 $\rho_{oil} < \rho < \rho_{water}$ 

Oil is the least dense of them so it should settle at the top with water at the base. Now the ball is denser than oil but less denser than water. So, it will sink through oil but will not sink in water. So it will stay at the oil-water interface.

#### 69 (b)

When two drops are splitted, the law of conservation of mass is obeyed

#### 70

On pourring water on left side, mercury rises x cm (say) from its previous level in the right limb of Utube crating a differences of levels of mercury by 2x cm. Equating pressure at A and B, we get  $p_A = p_B$ 

$$\therefore 11.2 \times 10^{-2} \times \rho_{\text{water}} \times g = 2x \times \rho_{\text{Hg}} \times g$$

 $11.2 \times 10^{-2} \times 1000 \text{ kgm}^{-3} = 2x \times 13600 \text{ kgm}^{-3}$  $x = \frac{11.2 \times 10^{-2} \times 1000}{2 \times 13600} \,\mathrm{m} = 0.41 \,\mathrm{cm}$ 





Bernoulli's equation for flowing liquid be written

$$p + \frac{1}{2}\rho v^2 + \rho gh = \text{constant} \quad ...(i)$$

Dividing the Eq. (i) by pg, we have

$$\frac{P}{\rho g} + \frac{v^2}{2g} + h = constant$$

In this expression,  $\frac{v^2}{2g}$  is velocity head and  $\frac{P}{\rho g}$  is

pressure head.

It is given that,

Velocity head = pressure head

ie, 
$$\frac{v^2}{2g} = \frac{P}{\rho g}$$
  
or  $v^2 = \frac{2p}{\rho}$   
or  $= \frac{2 \times 13.6 \times 10^3 \times 40 \times 10^{-2} \times 9.8}{10^3}$   
 $\therefore v = 10.32 \text{ ms}^{-1}$ 

72 (d)

Gauge pressure 
$$=\frac{4T}{R} = \frac{4 \times 0.03}{\frac{30}{20} \times 10^{-3}} = 8 \text{ Pa}$$

73 (c)

Gravitational force remains constant on the falling spherical ball. It is represented by straight line P. The viscous force ( $F = 6\pi\eta rv$ ) increases as the velocity increases with time. Hence, it is represented by curve Q. Net force = gravitational force – viscous force. As viscous force increases, net force decreases and finally becomes zero. Then the body falls with a constant terminal velocity. It is thus represented by curve R

74 (d)

Apparent weight in air = W — upthrust =  $V \rho g$  —  $V \sigma g$ 

$$=V\rho g\left(1-\frac{\sigma}{\rho}\right)=W\left(1-\frac{\sigma}{\rho}\right)$$

75 (b

Bernoulli's theorem for unit mass of liquid

$$\frac{P}{\rho} + \frac{1}{2}v^2$$
 constant

As the liquid starts flowing , it pressure energy decreases

$$\frac{1}{2}v^{2} = \frac{P_{1} - P_{2}}{\rho}$$

$$\Rightarrow \frac{1}{2}v^{2} = \frac{3.5 \times 10^{5} - 3 \times 10^{5}}{10^{3}}$$

$$\Rightarrow v^{2} = \frac{2 \times 0.5 \times 10^{5}}{10^{3}}$$

$$\Rightarrow v^{2} = 100$$

$$\Rightarrow v = 10 \text{ ms}^{-1}$$

76 **(b)** 

Let the volume of the ball be V. Force on the hall due to upthrust = Vdg

Net upward force = Vdg = VDg

If upward acceleration is a, then

$$Vda = Vdg - VDg$$

$$\therefore a = \left(\frac{d-D}{D}\right)g$$

Velocity on reaching the surface,  $v = \sqrt{2ah}$ 

Further  $v = \sqrt{2ah}$ 

$$\therefore 2ah = 2gH$$

or 
$$H = \frac{ah}{8} = \left(\frac{d-D}{D}\right)h = \left(\frac{d}{D} - 1\right)h$$

77 (c)

$$V = \frac{\pi p r^4}{8\eta l}$$
 and  $V' = \frac{\pi (3p+p)(r/2)^4}{8\eta l}$ 

$$\therefore \frac{V'}{V} = 4 \times (1/2)^4 = \frac{1}{4} \text{ or } V' = \frac{V}{4}$$

78 **(c)** 

Let  $p_0$  = atmospheric pressure. Then

$$p_1V_1 = p_2V_2 \text{ or } p_2 = p_1\frac{V_1}{V_2}$$

or 
$$p_2 = p_0 \left(\frac{40}{60}\right) = \frac{2}{3} p_0$$

$$p_2 + (20 \text{ cm of Hg}) = p_0$$

or 
$$\frac{2}{3}p_0 + (20 \text{ cm of Hg}) = p_0$$

or 
$$\frac{p_0}{3}$$
 = 20 cm of Hg

 $p_0 = 60 \text{ cm of Hg}$ 



79 (b)

$$M = \frac{4}{3}\pi r^3 \rho$$
 and  $8M = \frac{4}{3}\pi R^3 \rho$ 

So 
$$R^3 = 8 r^3$$

So 
$$R = 2r$$
; Now  $v \propto r^2$  so,

$$\frac{v_1}{v} = \left(\frac{2r}{r}\right)^2 = 4 \text{ or } v_1 = 4v$$

80 (d)

For water-glass interface, the angle of contact is less than 90°, so the shape of liquid meniscus is concave upward on both faces

81 (c)

If two drops of same radius r coalesce then radius of new drop is given by R

$$\frac{4}{3}\pi R^3 = \frac{4}{3}\pi r^3 + \frac{4}{3}\pi r^3 \Rightarrow R^3 = 2r^3 \Rightarrow R = 2^{1/3}r$$

If drop of radius r is falling in viscous medium then it acquire a critical velocity v and  $v \propto r^2$ 



$$\begin{aligned} \frac{v_2}{v_1} &= \left(\frac{R}{r}\right)^2 = \left(\frac{2^{1/3}r}{r}\right)^2\\ \Rightarrow v_2 &= 2^{2/3} \times v_1 = 2^{2/3} \times (5) = 5 \times (4)^{1/3} m/s \end{aligned}$$

82 **(b** 

Kinetic head =  $v^2/2g$  and pressure head =  $p/\rho g$ 

83 (c)

Excess of pressure inside the bubble, p = 4S/r. So smaller is the radiusr, the larger is the excess of pressurep. It means, the pressure of air is more in bubble A than in bubbleB. So the air will go from bubble A to bubble B

84 (d)

$$a_1v_1 = a_2v_2$$
  
 $\Rightarrow 4.20 \times 5.18 = 7.60 \times v_2$   
 $\Rightarrow v_2 = 2.86 \text{ ms}^{-1}$ 

85 (c)

Here, 
$$\eta=10^{-3} {\rm Nm^{-2}}$$
s,  $v=5~{\rm m~s^{-1}}$ ;  $l=10~{\rm m}$   
Strain rate  $=\frac{v}{l}$ 

Coefficient of viscosity,  $\eta = \frac{\text{Shearing stress}}{\text{Strain rate}}$ 

: Shearing stress =  $\eta \times \text{Strain rate}$ (10⁻³N m⁻²s)(5 m s⁻¹)

$$= \frac{(10^{-3} \text{N m}^{-2} \text{s})(5 \text{ m s}^{-1})}{(10 \text{ m})} = 0.5 \times 10^{-3} \text{ N m}^{-2}$$

87 (d)

Mass of adulterated milk

$$M_A = 1032 \times 10 \times 10^{-3}$$
  
= 10.32 kg

Mass of pure milk  $M_p = 1080V_p$ 

$$\therefore \quad \text{Mass of water } \rho_w V_w = M_A - M_p$$

$$\Rightarrow$$
 10³(10 × 10⁻³ - V_p) = 10.32 - 1080V_p

$$\implies 10-10^3 V_p = 10.32-1080 V_p$$

$$\Rightarrow$$
 80 $V_p = 0.32$ 

$$\therefore V_p = \frac{0.32}{80} \,\mathrm{m}^3$$

$$= \frac{0.32}{80} \times 1000L = 4L$$

90 (c)

Effective weight of solid of specific gravity 1 when immersed in water will be zero

91 (b)

When a ball is given anticlockwise rotation along with linear motion towards RHS then it will have maximum flight

92 (b)

Since, with increase in temperature, volume of given body increases, while mass remains constant so that density will decrease

$$i.e.\frac{\rho}{\rho_0} = \frac{m/V}{m/V_0} = \frac{V_0}{V} = \frac{V_0}{V_0(1+r\Delta\theta)} = (1-\gamma\Delta\theta)$$

$$\therefore \rho = \rho_0 (1 - \gamma \Delta \theta)$$

93 **(c**)

Pressure differences between lungs of students and atmosphere

= (760 - 750)mm of Hg

ie,  $h\rho g = 10$ mm of Hg = 1 cm of Hg

or 
$$h \times 1 = 1 \times 13.6$$

∴ 
$$h = 13.6 \text{ cm}$$

94 (c)

Let  $D_1$  be the inner diameter of the hemispherical bowl and  $D_2$  be the outer diameter of the bowl. As bowl is just floating so

$$\frac{4}{3}\pi \left(\frac{1}{2}\right)^3 \times 1.2 \times 10^3$$

$$= \frac{4}{3}\pi \left[ \left( \frac{1}{2} \right)^3 - \left( \frac{D_1}{2} \right)^3 \right] \times (2 \times 10^4)$$

$$\operatorname{Or} \frac{1.2 \times 10^3}{2 \times 10^4} = 1 - D_1^3$$

Or 
$$D_1 = \left(1 - \frac{1.2}{20}\right)^{1/3} = \left(\frac{18.8}{20}\right)^{1/3}$$

On solving,  $D_1 = 0.98 \text{ m}$ 

95 (c)

If V is the volume of sphere and  $\rho$  is its density then

$$V \rho = (V/2) \times 0.8 + (V/2) \times 13.6$$

$$= 7.2 V$$

Or 
$$\rho = 7.2 \, \mathrm{gcc^{-1}}$$

96 (c)

Movement of spinning ball, carburetor of automobile, heart attack and dynamic lift of an aeroplane all are based on the Bernoulli's principle

97 (b)

According to Boyle's law, pressure and volume are inversely proportional to each other *i.e.*  $P \propto \frac{1}{V}$ 

$$\Rightarrow P_1V_1 = P_2V_2$$

$$\Rightarrow (P_0 + h\rho_w g)V_1 = P_0 V_2$$

$$\Rightarrow V_2 = \left(1 + \frac{h\rho_w g}{P_0}\right) V_1$$



$$\Rightarrow V_2 = \left(1 + \frac{47.6 \times 10^2 \times 1 \times 1000}{70 \times 13.6 \times 1000}\right) V_1$$

$$\Rightarrow V_2 = (1+5)50cm^3 = 300cm^3$$

[As 
$$P_2 = P_0 = 70 \ cm \ of Hg = 70 \times 13.6 \times 1000$$
]

(c)

The surface tension of liquid decreases with increases of temperature. For small temperature differences it decreases almost linearly. The surface tension of a liquid becomes zero at a particular temperature, called the critical temperature of that liquid.

#### 100 (c)

Excess pressure inside a soap bubble of radius R

$$=\frac{4T}{R} \qquad \dots \dots (i)$$

Where *T* is surface tension of liquid film.

Pressure due to oil column

$$= h \rho g$$
 ......(ii)

Where h is height of column,  $\rho$  the density and gthe gravity.

From Eqs. (i) and (ii), we get

$$\frac{4T}{R} = h\rho g$$

$$\implies T = \frac{h\rho gR}{4}$$

Given,  $h = 2 \text{ mm} = 0.2 \text{ cm}, \text{ g} = 980 \text{cms}^{-2},$ 

$$\rho = 0.8 \, \text{gcc}^{-1}, R = 1 \, \text{cm}$$

$$\therefore T = \frac{0.2 \times 0.8 \times 980}{4}$$

$$= 3.92 \times 10 \text{ dyne cm}^{-1}$$

$$T = 3.9 \times 10 \times \frac{10^{-5}}{10^{-2}} = 3.9 \times 10^{-2} \text{ Nm}^{-1}$$

Relative density of solid

weight in air - weight in water

$$\Rightarrow$$
 Relative density of solid =  $\frac{120}{120-80} = \frac{120}{40} = 3$ 

Relative density of liquid =

weight in air-weight in liquid

weight in air-weight in water

$$=\frac{120-60}{120-80}=\frac{60}{40}=\frac{3}{2}$$

### 103 (a)

In hydraulic life, the pressure of smaller piston =

pressure of bigger piston = F/A

$$= (3000 \times 9.8)/(4.25 \times 10^{-2})$$

$$= 6.92 \times 10^5 \text{ Nm}^{-2}$$

### 104 (d)

Surface tension of a liquid is due to force of attraction between like molecules of a liquid ie cohesive force between the molecules

#### 105 (d)

Poiseuille's formula gives the quantity of liquid

Through a capillary,  $Q = \frac{\pi}{8} \frac{pr^4}{nl} \Rightarrow p = \frac{8}{\pi} Q \cdot \frac{\eta l}{r^4}$ 

If 
$$Q' = \frac{Q}{2}$$
,  $r' = 2r$ 

$$\frac{p'}{n} = \frac{8}{\pi} \frac{Q}{2} \frac{\eta l}{(2r)^4} = \frac{8}{\pi} \frac{Q. \eta l}{r^4} \times \frac{1}{32}$$

*i. e.*, pressure 
$$p' = \frac{p}{32}$$

## 106 (c)

Weight of block

= Weight of displaced oil + Weight of displaced

$$\Rightarrow mg = V_1 \rho_0 g + V_2 \rho_w g$$

$$\Rightarrow m = (10 \times 10 \times 6) \times 0.6 + (10 \times 10 \times 4) \times 1$$

$$= 760 \ gm$$

#### 107 (c)

For the given angular velocity of rotation, the centrifugal force  $F \propto r$ ; therefore, more liquid will be accumulated near the wall of tube and the liquid meniscus will become concave upwards

#### 108 (c)

Apparent weight = true weight - upward thrust

$$= w - \left(\frac{w}{\rho}\right)\rho_1 = w\left(1 - \frac{\rho_1}{\rho}\right)$$

$$\frac{dk}{dt} = \frac{d}{dt} \left(\frac{1}{2}Mv^2\right) = \frac{v^2}{2} \cdot \frac{dM}{dt} = \frac{v^2}{2} \left(\frac{dM}{dl} \times \frac{dl}{dt}\right)$$
$$\Rightarrow \frac{dk}{dt} = \frac{1}{2}mv^2 \times \frac{dl}{dt} = \frac{1}{2}mv^3$$

Let v be the volume of ice-berg outside the sea water while floating. Therefore, volume of iceberg inside the sea water= (V - v). As ice-berg is floating, so weight of ice-berg = weight of sea water displaced by ice-berg

ie 
$$V \times 0.9 \times g = (V - v) \times 1.1 \times g$$

Or 
$$1.1v = 1.1V - 0.9V$$

Or 
$$v/V = 0.2/1.1 = 2/11$$

## 111 (a)

The height of water in the tank becomes maximum when the volume of water flowing into the tank per second becomes equal to the volume flowing out per second. Volume of water flowing out per second

$$= Av = A\sqrt{2gh}$$
 ...(i)

Volume of water flowing in per second





$$= 70 cm^3/sec$$
 ...(ii)

From (i) and (ii) we get

$$A\sqrt{2gh}=70\Rightarrow 1\times \sqrt{2gh}=70$$

$$\Rightarrow 1 \times \sqrt{2 \times 980 \times h} = 70$$

$$\therefore h = \frac{4900}{1960} = 2.5 \ cm$$

#### 112 (d)

Pull on the rope = effective weight  $= [1650 + (1500 \times 0.2) - 1500 \times 1.3] \text{ kgf}$ 

$$= 1650 + 300 - 1950$$

## 113 (d)

From 
$$V = \frac{P\pi r^4}{8nl} \Rightarrow P = \frac{V8\eta l}{\pi r^4}$$

$$\Rightarrow \frac{P_2}{P_1} = \frac{V_2}{V_1} \times \frac{l_2}{l_1} \times \left(\frac{r_1}{r_2}\right)^4 = 2 \times 2 \times \left(\frac{1}{2}\right)^4 = \frac{1}{4}$$
$$\Rightarrow P_2 = \frac{P_1}{A} = \frac{P}{A}$$

#### 115 (c)

Let *R* be the radius of the biggest aluminium coin which will be supported on the surface of water due to surface tension. Then,  $mg = S \times 2\pi R$ or  $\pi R^2 t \rho g = S \times 2\pi R$ 

Or 
$$R = 2S/\rho gt$$

### 116 (c)

Since the wire frame is dipped in liquid, therefore its membrane has two free surfaces. Total length of square wire frame in contact of membrane  $= 2 \times \text{perimeter of square} = 2 \times 4L = 8L$ 

Hence, force acting on a frame

$$F = Tl = T \times 8L = 8L$$

#### 117 (b)

Let  $d_w$  and  $d_0$  be the densities of water and oil, then the pressure at the bottom of the tank

$$= h_w d_w g + h_0 d_0 g$$

Let this pressure be equivalent to pressure due to water of height h then

$$hd_w g = h_w d_w g + h_0 d_0 g$$

$$\therefore h = h_w + \frac{h_0 d_0}{d_w}$$

$$= 100 + \frac{400 \times 0.9}{1}$$

$$= 100 + 360 = 460$$

According to Toricelli's theorem,

$$v = \sqrt{2gh} = \sqrt{2 \times 980 \times 460}$$

 $=\sqrt{920\times980} \text{ cm s}^{-1}$ 

## 118 (d)

Water fills the tube entirely in gravity less condition.

$$AB = L, AC = \frac{L}{2}; AD = l \text{ (say)}$$

Let A = area of cross-section of the rod Weight of the rod =  $AL \rho$  g acting vertically downwards at C



Upthrust of liquid on rod =  $Al \sigma g$ , acting upwards through the mid-point of AD

For rotational equilibrium of rod net torque about point A should be zero. So

$$(LA\rho g)\frac{L}{2}\cos\theta = (lA\sigma g)\frac{l}{2}\cos\theta \text{ or } \frac{l^2}{L^2} = \frac{\rho}{\sigma}$$

Or 
$$\sin \theta = \frac{1}{2} \sqrt{\frac{\sigma}{\rho}}$$

## 120 (c)

The air pressure inside a soap bubble is

$$p = \frac{4T}{R}$$

Which is greater than the atmospheric pressure. If a hole is made at A, air will flow outside through A. then the thread becomes convex looking from A and from B towards A it is concave. Hence, becoming concave or convex, depends on size of A with respect to B.

#### 122 (d)

Here, R = 2.8/2 = 1.4 mm = 0.14 cm

$$= \frac{4}{3}\pi R^3 = 125 \times \frac{4}{3}\pi r^3$$

Or 
$$r = R/5 = 0.14/5 = 0.028$$
 cm

Change in energy = surface tension  $\times$  increase in area

$$= 75 \times (125 \times 4\pi r^2 - 4\pi R^2)$$

 $=74 \, \mathrm{erg}$ 

## 123 (a)

Volume of water in the vessel of base area A' and height h is V = A'h. Average velocity of out flowing water when height of water changes from

$$v = \frac{\sqrt{2 \operatorname{gh}} + 0}{2} = \frac{\sqrt{2 \operatorname{gh}}}{2}$$

$$\therefore V = A v t \dots (i)$$

When vessel is filled to height 4 h, then volume in vessel





$$=4V=4A\ vt=4A\frac{\sqrt{2gh}}{2}\times t$$

If t is the time taken for the out flowing liquid and  $\begin{vmatrix} 131 & \mathbf{c} \end{vmatrix}$  $v_1$  is the average velocity of out flowing liquid

$$4V = A v_1 t_1$$
or  $t_1 = \frac{4 V}{A v_1} = \frac{4 A \sqrt{2gh} \times t \times 2}{2 \times A \times \sqrt{2g \times 4h}} = 2t$ 

124 (c)

According to equation of continuity  $A_1 V_1 = A_2 V_2 + A_3 V_3$  $\Rightarrow$  4 × 0.2 = 2 × 0.2 + 0.4 ×  $V_3$   $\Rightarrow$   $V_3$  = 1m/s

125 (a)



Due to acceleration towards right, there will be a pseudo force in a left direction. So the pressure will be more on rear side (Points A and B) in comparison with front side (Point D and C) Also due to height of liquid column pressure will be more at the bottom (points B and C) in comparison with top (point A and D) So overall maximum pressure will be at point B and minimum pressure will be at point D

126 (a)

When substances are mixed in equal volume then

$$=\frac{\rho_1+\rho_2}{2}=4 \Rightarrow \rho_1+\rho_2=8$$
 ...(i)

When substances are mixed in equal masses the

$$= \frac{2\rho_1\rho_2}{\rho_1 + \rho_2} = 3$$

$$\Rightarrow 2\rho_1\rho_2 = 3(\rho_1 + \rho_2) \quad ...(ii)$$
By solving (i) and (ii) we get  $\rho_1 = 6$  and  $\rho_2 = 2$ 

127 (d)

Given that surface tension =  $0.075 \text{N m}^{-1}$ ; diameter = 30 cm = 0.30 m $\therefore Force = 0.075 \times 0.30$  $= 0.0225 \text{ N} = 2.25 \times 10^{-2} \text{ N}$ 

128 (b)

The air pushed down by the wings of the parrot while flying will go out of the wire cage. Due to which the weight of wire cage will decreases

130 (d)

A liquid does not wet the solid surface if the angle of contact is obtuse ie, greater than 90°. In this case cohesive forces will be greater than adhesive forces and so, the liquid does not wet the surface of solid.

The effective weight of the block in liquid will become less than 2 kg due to buoyancy of liquid. As a result of which A will read less than 2 kg As the body immersed in liquid has some effective weight acting downwards so the reading of B will be more than 5 kg

132 (c)

Surface area,  $A = 4 \pi r^2$  or  $r = (A/4\pi)^{1/2}$ Volume  $V = \frac{4}{3} \pi r^3$ Or  $=\frac{4}{3}\pi(A/4\pi)^{3/2} = kA^{3/2}$ 

Where  $\frac{4\pi}{3} \times \frac{1}{(4\pi)^{3/2}} = k = \text{constant}$ 

Using Boyle's law, we have

$$p_1 V_1 = p_2 V_2$$
Or  $p_2 = \frac{p_1 V_1}{V_2} = \frac{(10+h)kA_1^{3/2}}{kA_2^{3/2}}$ 

Or 
$$p_2 = (10 + h) \left(\frac{A_1}{A_2}\right)^{3/2}$$
  
=  $(10 + h) \left(\frac{1}{4}\right)^{3/2} = \frac{10 + h}{8}$ 

As  $p_2 = 10$  m of water, so  $10 = \frac{10+h}{8}$  or 80 = 10 + hOr h = 70 m

133 (d)  $h\rho g = \frac{2S}{r}$  or  $h = \frac{2S}{r\rho g}$  $= \frac{2 \times 75}{0.005 \times 1 \times 1000} = 30 \text{ cm}$ 

134 (a)

If velocities of water at entry and exit points are  $v_1$  and  $v_2$ , then according to equation of continuity

$$A_1 v_1 = A_2 v_2 \Rightarrow \frac{v_1}{v_2} = \frac{A_2}{A_1} = \left(\frac{r_2}{r_1}\right)^2 = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$$

135 (b)

The velocity of ball before entering the water surface

$$v = \sqrt{2gh} = \sqrt{2g \times 9}$$

When a ball enters into water, due to upthrust of water the velocity of ball decreases (or retarded) The retardation,

$$a = \frac{\text{apparent weight}}{\text{mass of ball}}$$

$$a = \frac{V(\rho - \sigma)g}{V\rho} = \frac{(\rho - \sigma)g}{\rho}$$

$$\left(\frac{0.4 - 1}{0.4}\right)g = -\frac{3}{2}g$$



If h be the depth upto which ball sink, then

$$0 - v^2 = 2 \times \left(\frac{-3}{2}g\right) \times h$$
  

$$\Rightarrow 2g \times 9 = 3gh$$
  

$$\therefore h = 6 \text{ cm}$$

From the formula the viscous force is given by  $F = 6\pi \eta r v$ 

$$= 6 \times \frac{22}{7} \times 2 \times 10^{-4} \times 0.35 \times 10^{-3} \times 1$$
$$= 13.2 \times 10^{-7} \text{N}$$

### 137 (c)

Apparent weight =  $V(\rho - \sigma)g = \frac{m}{\rho}(\rho - \sigma)g$ 

Where m = mass of the body

 $\rho$  = density of the body

 $\sigma$  = density of water

If two bodies are in equilibrium then their apparent weight must be equal

By solving we get  $\rho_2 = 3$ 

## 138 (d)

Let the volume of iceberg inside sea is x, then Volume of iceberg inside sea

Total volume of iceberg

$$= \frac{\text{Density of ice}}{\text{Density of sea water}}$$

or 
$$\frac{x}{V} = \frac{0.92}{1.03}$$
  
so  $x = \frac{0.92}{1.03}V$ 

Percentage of total volume of iceberg above the level of sea water is

$$= \left(\frac{V - x}{V}\right) \times 100$$

$$= \left(\frac{V - \left(\frac{0.92}{1.03}\right)V}{V}\right) \times 100\%$$

$$= \frac{0.11}{1.03} \times 100\% = 11\%$$
 (nearly)

$$P_1 = P_2 \Rightarrow \frac{F_1}{A_1} = \frac{F_2}{A_2} \Rightarrow \frac{10^7}{10^2} = \frac{2000 \times 10^3 \times 10^3}{A_2}$$
  
 $\therefore A_2 = 2 \times 10^4 cm^2 \quad (g = 980 \approx 10^3 cm/s^2)$ 

Work done = surface tension  $\times$  increase in area  $= 72 \times [10 \times 0.7 - 10 \times 0.5] \times 2$  $= 288 \, erg$ 

$$mg + \rho \times V_{\ell} \times g = \frac{V_0}{2} \times \rho \times g$$

$$V_{\ell} = \frac{V_0}{2} - \frac{m}{\rho}$$
So  $V_{\ell} < \frac{V_0}{2}$ 



## 145 (b)

Let  $p_0$  is the atmospheric pressure,  $\rho$  the density of liquid and v the velocity at which water is coming out. Applying this Bernoulli's theorem just inside and outside the hole.

$$P_{\text{inside}} + \rho g h + 0 = P_{\text{outside}} + \frac{\rho v^2}{2}$$

$$\Rightarrow P_0 + \rho g h = P_0 + \frac{\rho v^2}{2}$$

$$\Rightarrow v = \sqrt{2gh}$$

$$= \sqrt{2 \times 10 \times 20}$$

$$= 20 \text{ ms}^{-1}$$

## 147 (d)

$$\frac{4S}{r_1} - \frac{4S}{r_2} = \frac{4S}{r}$$

$$\operatorname{Or} \frac{1}{r} = \frac{1}{r_1} - \frac{1}{r_2} = \frac{1}{4} - \frac{1}{5} = \frac{1}{20} \text{ or } r = 20 \text{ cm}$$

#### 148 (a)

$$2\pi r \times T \cos \theta = \pi r^2 h \rho g$$

$$\implies T = \frac{rh\rho g}{2} = 0.11 \text{Nm}^{-1}$$

## 149 (d)

Angel of contact is defined as the angle inside the liquid between the tangent to the solid surface and the tangent to the liquid surface at the point contact.

Hence, it depends on orientation of solid surface in liquid.

# 150 (d)

$$P = P_a + \rho g h$$

### 151 (a)

When a drop of radius R splits into n smaller drops, (each of radius r), then surface area of liquid increases and hence surface energy increases.

#### 152 (d)

Excess of pressure, inside the first bubble  $p_1 = \frac{4T}{r}$ 





Similarly, 
$$p_2 = \frac{4T}{r_2}$$

Let the radius of the large bubble be R. then, excess of pressure inside the large bubble  $p=\frac{4T}{R}$ . Under isothermal condition, temperature remains constant.

So, 
$$pV = p_1 V_1 + p_2 V_2$$
  
 $\frac{4T}{R} \left( \frac{4}{3} \pi r^3 \right) = \frac{4T}{r_1} \left( \frac{4}{3} \pi r_1^3 \right) + \frac{4T}{r_2} \left( \frac{4}{3} \pi r_2^3 \right)$   
 $R^2 = r_1^2 + r_2^2$   
 $\Rightarrow R = \sqrt{r_1^2 + r_2^2}$ 

153 (a)  

$$v_1 = \frac{V}{A_1} = \frac{12 \times 10^{-6}}{6 \times 10^{-6}} = 2 \text{ ms}^{-1} = 200 \text{ cms}^{-1}$$

$$v_2 = \frac{V}{A_2} = \frac{12 \times 10^{-6}}{3 \times 10^{-6}} = 4 \text{ ms}^{-1} = 400 \text{ cms}^{-1}$$

$$p_A - p_B = \rho g(h_2 - h_1) + \frac{\rho}{2}(v_2^2 - v_1^2)$$

$$= 1 \times 1000(100) + \frac{1}{2}(16 \times 10^4 - 4 \times 10^4)$$

$$= 10^5 + 6 \times 10^4 = 1.6 \times 10^5 \text{ dyne cm}^{-2}$$

Given, 
$$v = \frac{2r^2 \rho g}{9\eta}$$
 ...(i)

Mass = 
$$\frac{4}{3}\pi r^3 \rho = \frac{4}{3}\pi (2r)^3 \rho_1$$

Or 
$$\rho_1 = \rho/8$$

Terminal velocity of second ball is

$$v_1 = \frac{2(2r)^2(\rho/8)g}{8 \eta} = \frac{v}{2}$$

#### 155 (c)

The speed of the body just before entering the liquid is  $v = \sqrt{2 \ gh}$ . The buoyant force B of the lake (ie, upward thrust of liquid on the body) is greater than the weight of the bodyw, since  $\sigma > \rho$ . If V is the volume of the body and a is the acceleration of the body inside the liquid, then B - w = ma

Or 
$$\sigma V g - \rho V g = \rho V a$$

Or 
$$(\sigma - \rho)g = \rho a$$
 or  $a = \frac{(\sigma - \rho)g}{\rho}$ 

Using the relation,  $v^2 = u^2 + 2as$ , we have

$$0 = \left(\sqrt{2 gh}\right)^2 - 2g \frac{(\sigma - \rho)}{\rho} s \text{ or } s = \frac{h\rho}{\sigma - \rho}$$

#### 156 (a)

Surface tension (T) of a liquid is equal to the work (W) required to increases the surface area ( $\Delta A$ ) of the liquid film by unity at constant temperature.

$$W = T\Delta A = \text{surface energy}$$

Also, volume of big drop =  $27 \times$  volume of small drop

$$ie, V' = 27V$$

Where V' is volume of big drop of diameter D and V the volume of small drop of diameter d.

$$\therefore \frac{4}{2}\pi \left(\frac{D}{2}\right)^3 = 27 \times \frac{4}{3}\pi \left(\frac{d}{2}\right)^3$$

$$\Rightarrow \frac{D}{2} = 3 \times \frac{d}{2}$$

$$\Rightarrow d = \frac{D}{3}$$

Radius of small drop,  $r = \frac{d}{2} = \frac{D}{6}$ 

 $\therefore \text{ Change in surface energy} = T(A_2 - A_1)$ 

$$= T[27.4\pi r^2 - 4\pi R^2]$$

$$= T4\pi \left[ 27 \left( \frac{D}{6} \right)^2 - \left( \frac{D}{6} \right)^2 \right]$$

$$= 4\pi T \left[ \frac{3D^2}{4} - \frac{D^2}{4} \right] = 2\pi D^2 T$$

#### 157 (a)

When a body is falling in a liquid with a constant velocity, the viscous force acting upward is balanced by the effective weight of the body (*ie* gravity pull on the body) acting downwards

#### 158 (b)

Let  $V_1$  and  $V_2$  be the volumes, then

$$V_1 + V_2 = V$$

As ball is floating.

Weight of ball = upthrust on ball due to two liquids

$$V\rho g = V_1 \rho_1 g + V_2 \rho_2 g$$
  

$$\Rightarrow V\rho = V_1 \rho_1 + (V - V_1) \rho_2$$

$$\implies V_1 = \left(\frac{\rho - \rho_2}{\rho_1 - \rho_2}\right) V$$

Fraction in upper part =  $\frac{V_1}{V} = \frac{\rho - \rho_2}{\rho_1 - \rho_2}$ 

Fraction in lower part=  $1 - \frac{V_1}{V}$ 

$$1-\frac{\rho-\rho_2}{\rho_1-\rho_2}=\frac{\rho_1-\rho}{\rho_1-\rho_2}$$

 $\therefore$  Ratio of lower and upper parts =  $\frac{\rho - \rho_2}{\rho_1 - \rho}$ 

#### 159 (c)

If the liquid is incompressible then mass of liquid entering through left end, should be equal to mass of liquid coming out from the right end

$$\therefore M = m_1 + m_2 \Rightarrow Av_1 = Av_2 + 1.5A.v$$
  
$$\Rightarrow A \times 3 = A \times 1.5 + 1.5A.v \Rightarrow v = 1 \text{ m/s}$$



$$p_1 + \frac{1}{2}\rho \ v_1^2 = p_2 + \frac{1}{2}\rho \ v_2^2$$

Or 
$$p_1 - p_2 = \frac{1}{2}\rho (v_2^2 - v_1^2)$$

$$= \frac{1}{2} \times 1.3 \times (120^2 - 90^2)$$

$$= 4.095 \times 10^3 \text{ Nm}^{-2}$$

Gross lift on the wing =  $(p_1 - p_2) \times area$ 

$$=4.095\times10^3\times10\times2$$

$$= 81.9 \times 10^3 \text{ N}$$

161 (c)

$$\Delta p = \frac{2T}{r} = \frac{2 \times 70 \times 10^{-3}}{1 \times 10^{-3}} = 140 \text{ Nm}^{-2}$$

163 (a)

When air is blown in the horizontal tube, the pressure of air decreases in the tube. Due to which the water will rise above the tube *A* 

164 (d)

Volume of cylinder =  $\frac{m}{\rho}$ 

Upthrust on cylinder = 
$$\left(\frac{m}{\rho}\right)\sigma$$
 g

From Newton's third law, the downward force exerted by cylinder on the liquid is  $= \left(\frac{m}{\rho}\right) \sigma$  g

$$\therefore \text{ Increase in pressure} = \frac{m \sigma g}{\rho A}$$

165 (c)

The effective weight = weight of bird + reactional force due to acceleration of bird

$$= 5 + ma = 5 + 0.5 \times 2 = 6 \text{ N}$$

166 (d)

$$A = (0.1)^2 = 0.01m^2$$

 $\eta = 0.01 \, Poise = 0.001 \, decapoise$  (M.K.S. unit),

 $dv = 0.1 \, m/s$  and  $F = 0.002 \, N$ 

$$F = \eta A \frac{dv}{dx}$$

$$\therefore dx = \frac{\eta A dv}{F} = \frac{0.001 \times 0.01 \times 0.1}{0.002} = 0.0005m$$

168 (a)

Using theorem of continuity, we have

$$\pi D_p^2 v_p = \pi D_Q^2 v_Q;$$

$$v_p = \left(\frac{D_Q}{D_P}\right)^2 v_Q = \left(\frac{4 \times 10^{-2}}{2 \times 10^{-2}}\right)^2 \times v_Q = v_Q = 4v_Q$$

169 (c)

The angle  $\theta$ , which the tangent to the liquid surface at the point of contact makes with the solid surface inside the liquid, is called the angle of contact or the capillary angle. The angle of contact is acute (less than 90°) in the case of liquids which wet the walls of the container, then liquid rises in the capillary and angle of contact is obtuse (greater than 90°) for the liquid which do

not wet the walls of the container, *ie*, they fall in capillary tube.

170 (d)

$$W = T \times 4\pi R^{2}$$

$$\Rightarrow \frac{W_{1}}{W_{1}} = \frac{T \times 4\pi R^{2}}{T \times 4\pi (3R)^{2}}$$

$$= \frac{T \times 4\pi R^{2}}{T \times 36\pi R^{2}} = \frac{1}{9}$$

 $W_1: W_2 = 1:9$ 

171 (c)

$$t = \frac{A}{a} \sqrt{\frac{2}{g}} \left[ \sqrt{H_1} - \sqrt{H_2} \right]$$

Now, 
$$T_1 = \frac{A}{a} \sqrt{\frac{2}{g}} \left[ \sqrt{H} - \sqrt{\frac{H}{\eta}} \right]$$

and 
$$T_2 = \frac{A}{a} \sqrt{\frac{2}{g}} \left[ \sqrt{\frac{H}{\eta}} - \sqrt{0} \right]$$

According to problem  $T_1 = T_2$ 

$$\therefore \sqrt{H} - \sqrt{\frac{H}{\eta}} = \sqrt{\frac{H}{\eta}} - 0 \Rightarrow \sqrt{H} = 2\sqrt{\frac{H}{\eta}} \Rightarrow \eta = 4$$

172 (c)

(i) FBD of the cube with respect to the container

$$B = \left(\frac{m}{\sigma}\right) \rho g_{\text{eff}} = m \left(\frac{\rho}{\sigma}\right) \sqrt{a^2 + g^2}$$

$$\tan \theta = \frac{a}{g}$$

$$\sin \theta = \frac{a}{\sqrt{a^2 + g^2}}; \cos \theta = \frac{g}{\sqrt{a^2 + g^2}}$$

Let acceleration of the cube w.r.t. container in horizontal direction in  $a_x$ '

$$mg + B \sin \theta - \frac{mg}{2} = ma_x$$

$$a_x = \frac{g}{2} + \frac{\rho}{\sigma}a = a_x \Rightarrow \frac{g}{2} + \frac{\rho}{\sigma} \cdot \frac{g}{2} = a_x$$

Hence, 
$$a_x = a_x + \frac{g}{2} = g + \frac{g \rho}{2 \sigma}$$

$$a_{\chi} = g \left[ \frac{2\sigma + \rho}{2\sigma} \right]$$
 (i)

In vertical direction:  $B \cos \theta - mg = ma_y$ 



$$m\left(\frac{\rho}{\sigma}\right)\sqrt{a^2+g^2}\cdot\frac{g}{\sqrt{a^2+g^2}}-mg=ma_y$$

$$a_y = g\left[\frac{\rho}{\sigma} - 1\right] = g\left[\frac{\rho - \sigma}{\sigma}\right]$$
 (ii)

$$\frac{a_x}{a_y} = \frac{(2\sigma + \rho)}{2(\rho - \sigma)}$$

(ii) FBD of the sphere:

$$a_x = g$$

$$a_y = \frac{-mg + \frac{m\rho}{\sigma}g}{m} = \left(\frac{\rho - \sigma}{\sigma}\right)g$$

$$\Rightarrow$$
 Hence,  $\frac{a_x}{a_y} = \frac{\sigma}{\rho - \sigma}$ 

(iii) FBD of the cylinder

Hence,  $(P_2 - P_1)A = ma_x$ 

$$\frac{\rho\omega^2}{2}[(2x)^2 - x^2]A = ma_x$$

$$\frac{\rho}{2} \left( \frac{2g}{3x} \right) 3x^2 A = (A - x)\sigma a_x$$

This gives  $\frac{a_x}{g} = \frac{\rho}{\sigma}$ 

(iv) When the cart is not filled with liquid

$$\tan \theta = \frac{a}{g}$$
 (i)

When the car is filled with liquid

FBD of the pendulum,

Cart: 
$$(T + B) \sin \theta' mg$$
 (i)

$$(T+B)\cos\theta' = mg$$
 (ii)

$$\tan \theta' = \frac{a}{g}$$
 (iii)

Hence, 
$$\frac{\tan \theta'}{\tan \theta} = \frac{1}{1} = \frac{\theta'}{\theta} = 1:1$$

### 173 (d)

As hole is made in the tank below the free surface of water, so water rushing from this hole follows a parabolic path.

The velocity of efflux liquid,

$$v = \sqrt{2gh}$$

Time 
$$t = \sqrt{\frac{2(H-h)}{g}}$$

Horizontal range, R = vt

$$R = \left(2gh \times \frac{2(H-h)}{g}\right)^{\frac{1}{2}}$$

ie, 
$$R^2 = 4h(H - h) = 4(Hh - h^2)$$

The range is maximum if

$$\frac{dR}{dh} = 0$$

or 
$$\frac{2RdR}{dh} = 4(H - 2h)$$

or 
$$0 = (H - 2h)$$

or 
$$h = \frac{H}{2}$$

## 174 (a)

Using Pascal's law

$$P_1 = P_2 \Rightarrow \frac{F_1}{\left(\frac{\pi d_1^2}{4}\right)} = \frac{F_2}{\left(\frac{\pi d_2^2}{4}\right)} \Rightarrow F_2 = \frac{d_2^2}{d_1^2} F_1$$

### 175 (b)

Terminal velocity

$$v_T = \frac{2}{9} \frac{r^2(\rho - \sigma)}{\eta}$$

where  $\rho = \text{density of the ball}$ 

 $\sigma$  = density of liquid

r = radius of ball

From this formula it is clear that terminal velocity is independent of height of liquid.

#### 176 (b)

Pressure at bottom of the lake =  $P_0 + h\rho g$ 

Pressure at half the depth of a lake =  $P_0 + \frac{h}{2}\rho g$ 

According to given condition

$$P_0 + \frac{1}{2}h\rho g = \frac{2}{3}(P_0 + h\rho g) \Rightarrow \frac{1}{3}P_0 = \frac{1}{6}h\rho g$$





$$\Rightarrow h = \frac{2P_0}{\rho g} = \frac{2 \times 10^5}{10^3 \times 10} = 20m$$

177 (c)

Terminal velocity

$$v \propto r^2$$

$$\therefore \frac{v'}{v} = \frac{(2R)^2}{(R)^2}$$

or 
$$v' = 4v$$

178 (d)

The excess of pressure inside the first bubble of radius  $r_1$  is,  $p_1 = 4 S/r_1$ ; and in the second bubble of radius  $r_2$  is,  $p_2 = 4 S/r_2$ 

$$p = \frac{4S}{r} = \frac{4S}{r_1} - \frac{4S}{r_2}$$

$$\Rightarrow \frac{1}{r} = \frac{r_2 - r_1}{r_1 r_2}$$

$$\Rightarrow r = \frac{r_1 r_2}{r_2 - r_1}$$



179 (d)

Tension in spring T = upthrust - weight of sphere $= V\sigma g - V\rho g = V\eta\rho g - V\rho g \quad [As \ \sigma = \eta\rho]$  $=(\eta-1)V\rho g=(\eta-1)mg$ 

180 (a)

The liquid which do not wet the solid have obtuse angle of contact. For mercury and glass, the angle of contact is 135°.

181 (a)

Let at a time tdV be the decrease in volume of water in vessel in timedt. Therefore rate of decreases of water in vessel = rate of water flowing out of narrow tube

So 
$$-\frac{dV}{dt} - \frac{\pi(p_1 - p_2)r^4}{8nl}$$

But 
$$p_1 = p_2 = h \rho g$$

$$\therefore -\frac{dV}{dt} = \frac{\pi(h \rho g)r^4}{8\eta l} = \frac{(\pi \rho g r^4)}{8\eta l \times A} \times (h \times A)$$

Where  $h \times A =$ Volume of water in vessel at a time t = V

$$\therefore dV = -\left(\frac{\pi \rho g r^4}{8\eta l A}\right) \times V dt = -\lambda V dt$$

$$\operatorname{Or} \frac{dV}{V} = -\lambda \ dt$$

Where 
$$\frac{\pi \rho g r^4}{8\eta l A} = \lambda = \text{constant}$$

Integrating it within the limits as time changes 0 to t, volume changes  $V_0$  to V

Or 
$$\log_e \frac{v}{v_0} = -\lambda t$$
 or  $V = V_0 e^{-\lambda t}$ 

Where  $V_0$  = initial volume of water in vessel

Therefore,  $h \times A = h_0 A e^{-\lambda t}$  or  $h = h_0 e^{-\lambda t}$ 

Thus, the variation of *h* and *t* will be represented by exponential curve as given by (a)

182 (a)

Force on the ring due to surface tension of water  $= (\pi D_1 + \pi D_2)S = mg$ 

So 
$$S = \frac{mg}{\pi(D_1 + D_2)} = \frac{3.47 \times 980}{(22/7) \times (8.5 + 8.7)}$$
  
= 72.07 dyna cm⁻¹

 $= 72.07 \text{ dyne cm}^{-1}$ 

183 (b)

$$V = \frac{\pi \Pr^4}{8\eta l} = \frac{8cm^3}{sec}$$

$$V_1 = \frac{P\pi r^4}{8\eta \left(l + \frac{l}{2}\right)} = \frac{2}{3} \frac{\pi P r^4}{8\eta l} = \frac{2}{3} \times 8 = \frac{16}{3} \frac{cm^3}{sec}$$

$$\left[\because l_1 = l = 2l_2 \text{ or } l_2 = \frac{l}{2}\right]$$

184 (b)

As the water level rises in one arm; it falls in another arm by 25 m. Equating the pressure at depth 50 cm down in arm of water with other due to liquid, we have  $h \times 0.8 \times g = 50 \times 1 \times g$ Or h = 50/0.8 = 62.5 cm

Height of oil in one limb above the water in another limb

$$= 62.5 - 50 = 12.5$$
 cm

185 (d)

When the surface area of a liquid is increased, molecules from the interior of the liquid rise to surface. As these molecules reach the surface work is done against the cohesive force. This work is stored in the molecules in the form of potential energy. Thus, the potential energy of the molecules lying in the surface is greater than that of the molecules in the mirror of the liquid.

186 (d)

The terminal velocity of the spherical body of radius R, density  $\rho$  falling through a liquid of density  $\sigma$  is given by

$$v_T = \frac{2}{9} \frac{R^2(\rho - \sigma)g}{\eta}$$

Where  $\eta$  is the coefficient of viscosity of the liquid

$$v_{T_1} = \frac{2R_1^2(\sigma_2 - \sigma)g}{9\eta} \text{ and } v_{T_2} = \frac{2R_2^2(\sigma_2 - \sigma)g}{9\eta}$$

According to the given problem,  $v_{T_1} = v_{T_2}$ 

$$R_1^2(\rho_1 - \sigma) = R_2^2(\rho_2 - \sigma) \text{ or } \frac{R_1^2}{R_2^2} = \frac{\rho_2 - \sigma}{\rho_1 - \sigma}$$

Substituting the given values, we get



$$\frac{R_1^2}{R_2^2} = \frac{(11 \times 10^3 - 2 \times 10^3)}{(8 \times 10^3 - 2 \times 10^3)} = \frac{9}{6} = \frac{3}{2}$$

$$R_1 = \boxed{3}$$

$$\frac{R_1}{R_2} = \sqrt{\frac{3}{2}}$$

187 (b)

According to Bernoulli's theorem,  $h = \frac{v^2}{2a}$ 

$$\Rightarrow h = \frac{(2.45)^2}{2 \times 10} = 0.30m = 30.0cm$$

: Height of jet coming from orifice  $=30.0-10.6=19.4cm\cong20cm$ 

## 188 (c)

Due to surface tension water rises in the capillary tube upto a height h with concave meniscus on both the sides. Therefore, the total height of water column in the capillary tube = h + h = 2h

189 (a)

In level flight of aeroplane, mg = pA

Or 
$$p = \frac{mg}{A} = \frac{3 \times 10^4 \times 10}{120}$$
 Pa = 2.5 kPa

As shown in figure, in the two arms of a tube pressure remains same on surface PP'.



Hence,  $8 \times \rho_y \times g \times 2 \times \rho_{Hg} \times g = 10 \times \rho_x \times g$ 

$$...8\rho_{\nu} + 2 \times 113.6 = 10 \times 3.36$$

or 
$$\rho_y = \frac{36.6-27.2}{8} = 0.8 \text{ g cc}^{-1}$$

191 (c)

We have

$$v^2 = \rho g h$$

$$a^2 \sqrt{\rho g h} = \pi r^2 \sqrt{\rho g h} \times 2$$

$$r = \frac{a}{2\pi}$$

192 (d)

Reading of the spring balance

- = Apparent weight of the block
- = Actual weight upthrust
- $= 12 V_{in}\sigma g$

$$= 12 - 500 \times 10^{-6} \times 10^{3} \times 10 = 12 - 5 = 7N$$

193 (d)

Let b be width of the glass wall. When the tank is half filled then the average force on the glass wall

 $F = average pressure \times area$ 

$$= \left[ \left( \frac{4}{2} \right) \rho_w \mathbf{g} \right] \times \left[ \frac{4}{2} \times b \right]$$

When tank is filled up to height 4 m, then

$$F' = (4 \rho_w g)(4 \times b)$$

$$\frac{F'}{F} = \frac{4 \times 4}{2 \times 2} = 4 \text{ or } F' = 4F$$

194 (d)

Let R and R' be the radius of bubble of volume V and 2 V respectively. Then

$$\frac{4}{3}\pi R^3 = V \text{ and } \frac{4}{3}\pi R'^3 = 2V$$

So, 
$$\frac{R'^3}{R^3} = 2$$
 or  $R' = (2)^{1/3}R$ 

As 
$$W = S \times (4 \pi R^2) 2$$
 and  $W' = S \times (4 \pi R'^2) 2$ 

$$\frac{W'}{W} = \frac{R^2}{R^2} = 2^{2/3} = (4)^{1/3}$$
 or  $W' = (4)^{1/3}W$ 

195 (b)

As excess pressure, $p \propto 1/r$ , therefore, pressure inside C is highest and pressure inside B is lowest. The pressure inside *A* is in between. Therefore *C* starts collapsing with volume of A and B increasing

196 (b)

Given :  $u = S \times 4 p R^2$ ; when droplet is splitted into 1000 droplets each of radius r, then

$$\frac{4}{3}\pi R^3 = 1000 \times \frac{4}{3}\pi r^3 \text{ or } r = R/10$$

: Surface energy of all droplets

$$= S \times 1000 \times 4\pi r^2 = S \times 1000 \times 4\pi (R/10)^2$$

$$= 10 (S 4\pi/R^2) = 10u$$

$$V = \frac{\pi p r^4}{8 n l}, ie, V \propto r^4$$

$$\frac{v'}{v} = \frac{(a/2)^4}{a^4} = \frac{1}{16}$$
 or  $V' = \frac{v}{16} = \frac{16}{16} = 1$  cm³

An oil drop spreads as thin layer, on the surface of water because the cohesive force between water molecules is greater than the adhesive force between water-oil molecules, hence the surface tension of water is greater than that oil.

199 (c)

The system is closed. The weight of parrot is suppresses the base of air cage with a weight equal to weight of parrot. These are internal forces. So there will be no change in the reading of the spring balance

200 (d)

The velocity gradient



$$= \frac{\Delta V}{\Delta r} = \frac{8}{0.1} = 80 \,\mathrm{s}^{-1}$$

Rate of flow of liquid is given by

$$\frac{dQ}{dt} = \frac{\pi p r^4}{8\eta L}$$

As capillaries are joined in series, so  $\left(\frac{dQ}{dt}\right)$ 

will be same for each capillary.

Hence, 
$$\frac{\pi pr^4}{8\eta L} = \frac{\pi p'(r/2)^4}{8\eta \left(\frac{L}{2}\right)} = \frac{\pi p'(r/3)^4}{8\eta \left(\frac{L}{3}\right)}$$

So, pressure difference across the ends of 2nd capillary

$$p' = 8p$$

and across the ends of 3rd capillary

$$p' = 27p$$

203 (d)

Excess pressure inside a spherical drop of water

$$p = \frac{2T}{R}$$

Given,  $p_1 = 4p_2$ 

$$\frac{2T}{R_1} = 4 \times \frac{2T}{R_2}$$

or 
$$R_2 = 4R_1$$

Now, 
$$\frac{m_1}{m_2} = \frac{4\pi R_1^3 d_1}{4\pi R_2^3 d_2}$$

or 
$$\frac{m_1}{m_2} = \frac{R_1^3}{R_2^3}$$

$$\frac{m_1}{m_2} = \frac{1}{64}$$

204 (b)

Change in surface energy =  $2 \times 10^{-4}$  J

$$\Delta A = 10 \times 6 - 8 \times 3.75$$

$$= 30 \text{ cm}^2$$

$$=30 \times 10^{-4} \text{m}^2$$

Work done  $W = T \times 2 \times \text{(change in area)}$ 

Now, change in surface energy = Work done

$$2 \times 10^{-4} = T \times 2 \times 30 \times 10^{-4}$$

$$T = 3.3 \times 10^{-2} \text{ Nm}^{-1}$$

205 (d)

$$2SI = F$$

Or 
$$S = F/2l = (2 \times 10^{-2})/2 \times 0.10 = 0.1 \text{ Nm}^{-1}$$

207 (d)

If v is the terminal velocity, then

$$xg - yg = 6 \pi \eta r v$$

Or 
$$v = \frac{(x-y)}{r} \frac{g}{6\pi \eta}$$

Or 
$$v \propto \frac{(x-y)}{r}$$

208 (d)

Let a bubble of radius r and density  $\rho$  is rising up in a liquid whose density is  $\sigma$  and coefficient of viscosity  $\eta$ .



Then effective force acting downward

$$= V(\rho - \sigma)g = \frac{4}{3}\pi r^{3}(\rho - \sigma)g$$

Viscous force acting upward=  $6\pi\eta rv$ .

Since bubble is moving up with constant velocity v, there is no acceleration in it, the net force acting on it must be zero.

$$\therefore 6\pi \eta \, rv = \frac{4}{3} \, \pi r^3 (\rho - \sigma) g$$

$$\Rightarrow \eta = \frac{2}{9} \frac{r^2(\rho - \sigma)}{v} g$$

Given,  $v = -2 \times 10^{-3} \text{ ms}^{-1}$ ,  $r = 10^{-2} \text{m}$ 

$$\rho = 0, \sigma = 1.5 \times 10^3 \text{ kgm}^{-3}, g = 10^{-2}$$

$$\rho = 0, 6 = 1.5 \times 10^{3} \text{ kgm}^{3}, g = 10^{3}$$

$$\therefore \eta = \frac{2 \times (10^{-2})^{2} \times (-1.5 \times 10^{3}) \times 10}{9 \times (-2 \times 10^{-3})}$$

$$= \frac{3}{18 \times 10^{-3}} = \frac{1}{6} \times 10^{3}$$

$$= \frac{3}{18 \times 10^{-3}} = \frac{1}{6} \times 10^3$$

$$= 0.167 \times 10^3 = 167$$
 units.

209 (d)

 $\rho_1 < \rho_2$  as denser liquid acquires lowest position of vessel.

 $\rho_3 < \rho_2$  as ball sinks in liquid 1 and  $\rho_3 < \rho_2$  as ball doesn't sinks in liquid 2, so

$$\rho_1 < \rho_3 < \rho_2$$

210 (a)

Viscous force upwards = Apparent weight in

$$\therefore \text{ Viscous force} = Mg - \frac{Mgd_2}{d_1}$$

Viscous force = 
$$Mg\left(1 - \frac{d_2}{d_1}\right)$$

211 (d)

When a tiny lead short is gently dropped on the surface of a viscous liquid, the velocity of lead shot will increase with time and finally will reach to a steady value called terminal velocity

212 (d)

Pressure applied by liquid column

$$p = h \rho g$$

Ie, the pressure depends on the height of liquid column no on its size, so pressure at the bottom of A and B is same.





213 (c)

Volume = 
$$\frac{4}{3}\pi R^3 = 8 \times \frac{4}{3}\pi r^3$$
 or  $r = R/2$   
Work done =  $T \times (4\pi r^2 \times 8 - 4\pi R^2)$   
=  $T \times 4\pi \left(\frac{R^2}{4} \times 8 - R^2\right) = 4\pi R^2 T$ 

214 (b)

Pressure at the bottom = hdgPressure at the top due to liquid column = 0

$$\therefore \text{ Mean pressure} = \frac{hdg + 0}{2} = hdg/2$$

215 (b)

The rate of flow of water inside a capillary

$$V = \frac{\pi p r^4}{8 n l},$$

Pressure difference  $p = \frac{V(8 n l)}{\pi r^4}$ 

In series combination  $p = p_1 + p_2$  where  $p_1$  and  $p_2$  are the pressure difference in the two tubes.

$$\therefore \frac{V(8 n l)}{\pi r^4} = \frac{V'(8 n l)}{\pi r^4} + \frac{V'(8 n l)}{\pi (\pi/2)^4}$$

In series combination, rate of flow of water (V') will be same in both the tubes.

$$\frac{V}{r^4} = \frac{V'}{r^4} + \frac{V' \times 16}{r^4}$$

$$V = V' + 16V'$$

$$V' = \frac{V}{17}$$

216 (d)

Initially the position of wooden block is as shown in figure. Since, the density of block is half than that of water, hence half of its volume is immersed in water



When weight w is put on the block, the remaining half of the volume of block is immersed in water, figure (b). Therefore, w =additional upthrust + spring force

$$= l \times l \times \frac{1}{2} \times 2\rho \times g + k\left(\frac{1}{2}\right) = l\left(l^2\rho \ g + \frac{k}{2}\right)$$

217 (d)

$$V(d - d_1)g = m_1g$$

$$V(d - d_2)g = m_2g$$

$$\frac{d - d_1}{d - d_2} = \frac{m_1}{m_2}$$

$$\therefore d = \frac{m_1 d_2 - m_2 d_1}{m_1 - m_2}$$

218 (c)

The force of surface tension pulls the plates towards each other

219 (c)

For parallel combination  $\frac{1}{R_{eff}} = \frac{1}{R_1} + \frac{1}{R_2}$ 

$$\Rightarrow \frac{\pi r^4}{8\eta l} = \frac{\pi r^4}{8\eta l_1} + \frac{\pi r^4}{8\eta l_2} \Rightarrow \frac{1}{l} = \frac{1}{l_1} + \frac{1}{l_2} \ \therefore \ l = \frac{l_1 l_2}{l_1 + l_2}$$

220 (a)

Applying continuity equation at 1 and 2, we have  $A_1v_1 = A_2v_2$  .....(*i*)

Further applying Bernoulli's equation at these two points, we have

$$p_0 + \rho g h + \frac{1}{2} \rho v_1^2 = p_0 + 0 + \frac{1}{2} \rho v_2^2 \quad ... \dots (ii)$$



Solving Eqs. (i) and (ii) we have

$$v_2^2 = \frac{2gh}{1 - \frac{A_2^2}{A_1^2}}$$

Substituting the values, we have

$$v_2^2 = \frac{2 \times 10 \times 2.475}{1 - (0.1)^2} = 50 \text{m}^2 \text{s}^{-2}$$

221 (a)

Fraction of volume immersed in the liquid  $V_{in} = \left(\frac{\rho}{\sigma}\right) V$ 

 $\it i.e.$  it depends upon the densities of the block and liquid

So there will be no change in it if system moves upward or downward with constant velocity or some acceleration

222 (c)

Form principle of continuity

$$A_1v_1 = A_2v_2$$
  

$$\pi R^2 \cdot v = \pi (2R)^2 \cdot v_2$$
  

$$v_2 = \frac{v}{4}$$

223 (c)

Let l be the length of the cylinder in water it is in the vertical position and A be the cross-sectional area of the cylinder. As cylinder is floating so Weight of cylinder = upward thrust $mg = A \ l \ \rho \ g$  or  $m = A l \rho$ 

When the cylinder is tilled through an angle  $\theta$ , length of cylinder in water =  $\frac{l}{\cos \theta}$ 



Weight of water displaced =  $\frac{l}{\cos \theta} A \rho g$ Restoring force =  $\frac{l A \rho g}{\cos \theta} = l A \rho g$ 

$$= l A \rho g \left[ \frac{1}{\cos \theta} - 1 \right] = mg \left[ \frac{1}{\cos \theta} - 1 \right]$$

224 (c)

The surface tension of liquid decreases with rise of temperature. The surface tension of liquid is zero at its boiling point and it vanishes at critical temperature. At critical temperature intermolecular forces for liquid and gases becomes equal and liquid can expand without any restriction. For small temperature differences, the variation in surface tension with temperature is linear and is given by relation

$$T_1 = T_0(1 - \alpha t)$$

Where  $T_1$ ,  $T_0$  are the surface tension at  $t^{\circ}$ C and  $0^{\circ}$ C respectively and  $\alpha$  is the temperature coefficient of surface tension.

225 (d)

$$V\sigma f=0.6V\sigma_1 g$$

$$V\sigma g = 0.4V\sigma_2 g$$

$$\therefore 1 = \frac{6}{4} \frac{\sigma_1}{\sigma_2}$$

$$\therefore \frac{\sigma_2}{\sigma_1} = \frac{3}{2} = 1.5$$

226 (b)

Force on the base of the vessel

= pressure ×area of the base

$$= h \rho g \times A = 0.4 \times 900 \times 10 \times 2 \times 10^{-3}$$

= 7.2 N

227 (a)

The surface tension of liquid at critical temperature is zero

228 (c)

In time  $\Delta t$ , momentum of water entering the hydrant

$$\vec{\mathbf{p}}_1 = (\rho \, L \Delta t) v \hat{\mathbf{j}}$$

Momentum of water while leaving the hydrant in

time  $\Delta t$  is  $\vec{\mathbf{p}}_2 = (\rho L \Delta t) v(-\hat{\mathbf{i}})$ 

Change in momentum in time  $\Delta t$  is

$$\Delta \vec{\mathbf{p}} = \vec{\mathbf{p}}_2 - \vec{\mathbf{p}}_1 = \rho L \Delta t v \left( -\hat{\mathbf{i}} - \hat{\mathbf{j}} \right)$$

$$|\Delta \vec{\mathbf{p}}| = \rho L \Delta t v \sqrt{(-1)^2 + (-1)^2}$$

 $=\sqrt{2} \rho L\Delta tv$ 

Force exerted by water,  $F = \frac{|\Delta \vec{\mathbf{p}}|}{\Delta t} = \sqrt{2} \rho L v$ 

229 (a)

According to Bernoulli's theorem when an in compressible and non-viscous (liquid) or gas flows in stream-lined motion from one place to another, then at every point of its path the total

energy per unit volume (pressure energy + kinetic energy +potential energy) is a constant. Hence, in stream line flow of liquid, the total energy of liquid is constant at all points.

230 (b)

In the first 100 m body starts from rest and its velocity goes on increasing and after 100 m it acquire maximum velocity (terminal velocity). Further, air friction i.e. viscous force which is proportional to velocity is low in the beginning and maximum at  $v=v_T$ 

Hence work done against air friction in the first 100 m is less than the work done in next 100 m

231 (b)

Let A be the area of cross-section of through and  $\rho$  be the density of mercury

Initial mass of mercury in trough

$$= A \times 3.6 \times \rho$$

Final mass of mercury in trough

$$= A h' \rho = (A \times 3.6 \times \rho) \times 2$$

or h' = 7.2 cm

232 (a)

The force acting on the ball are gravity force, buoyancy force and viscous force. When ball acquires terminal speed, it is in dynamic equilibrium, let terminal speed of ball is  $v_T$ .

So, 
$$V\rho_2 g + kv_T^2 = V\rho_1 g$$

$$v_r = \sqrt{\frac{V(\rho_1 - \rho_2)g}{k}}$$



233 (a)



Vertical height of the liquid in portion AC

$$h_1 = DO + OE = R\sin\theta + R\cos\theta$$

$$= R(\sin\theta + \cos\theta)$$

Vertical height of the liquid in portion  ${\it CP}$ 

$$h_2 = R - R\cos\theta = R(1 - \cos\theta)$$

Vertical height of the liquid in portion PB

$$h_3 = R - R \sin \theta = R(1 - \sin \theta)$$



In equilibrium, the pressure due to liquid on the both sides must be equal at the lowest point P  $\delta g h_1 + \rho g h_2 = \rho g h_3$  [As pressure =  $h \rho g$ ]  $\delta gR(\sin\theta + \cos\theta) + \rho gR(1 - \cos\theta)$ 

$$= \rho g R (1 - \sin \theta)$$

 $\delta(\sin\theta + \cos\theta) + \rho(1 - \cos\theta) = \rho(1 - \sin\theta)$ 

 $(\rho + \delta) \sin \theta = (\rho - \delta) \cos \theta$ 

$$\tan \theta = \frac{(\rho - \delta)}{(\rho + \delta)} \Rightarrow \theta = \tan^{-1} \left(\frac{\rho - \delta}{\rho + \delta}\right)$$

Let radius of curvature of the common internal film surface of the double bubble formed be r'. Then, excess of pressure as

compared to atmosphere inside A is  $\frac{4T}{r}$  and B is  $\frac{4T}{r}$ 



The pressure difference is

$$\frac{4T}{r_1} = \frac{4T}{r_2} = \frac{4T}{r'}$$

$$\Rightarrow r' = \frac{r_1 r_2}{r_2 - r_1}$$

Given, 
$$r_1 = r_2 = r$$
  

$$\therefore r' = \frac{r_2}{0} = \infty$$

235 (c)

$$\begin{split} p_1 &= p_0 + \rho g h_1 \\ p_2 &= p_0 + \rho g h_2 = p_0 + 2 \rho g h_1 \\ &= 2(p_0 + \rho g h_1) - p_0 = 2p_1 - p_0(p_2 < 2p_1) \end{split}$$

Surface energy = surface tension  $\times$  surface area

New surface energy,  $E_1 = S \times 2(A/2) = S \times A$ % decrease in surface energy =  $\frac{E-E_1}{F} \times 100$ 

$$=\frac{2 SA - SA}{2 SA} \times 100 = 50\%$$

237 (b)

Mass of the cylinders =  $AL(\rho_1 + \rho_2)$ . As cylinders float with length L/2 outside the water, therefore length of cylinder inside the water = 3L/2. When cylinders are floating, then, weight of cylinder = weight of water displaced by cylinder

So 
$$AL(\rho_1 + \rho_2)g = A(3L/2) \times 1 \times g$$

Or 
$$\rho_1 + \rho_2 = 3/2$$

As 
$$\rho_1 < \rho_2$$
, so  $\rho_1 < 3/4$ 

238 (c)

Surface energy = surface tension  $\times$  surface area

$$E = T \times 2A$$

New surface energy,

$$E_1 = T \times 2\left(\frac{A}{2}\right) = T \times A$$

% decrease in surface energy =  $\frac{E - E_1}{E} \times 100$  $=\frac{2TA-TA}{2TA}\times 100 = 50\%$ 

239 (b)

$$V = a_1 a_2 \sqrt{\frac{2(p_1 - p_2)}{\rho(a_1^2 - a_2^2)}}$$

$$= \pi r_1^2 \times \pi r_2^2 \sqrt{\frac{2(p_1 - p_2)}{\rho[(\pi r_1^2)^2 - (\pi r_2^2)^2]}}$$

$$=\pi r_1^2 r_2^2 \sqrt{\frac{2(p_1-p_2)}{\rho(r_1^4-r_2^4)}}$$

$$=\frac{22}{7}\times(0.1)^2$$

$$\times (0.04)^2 \sqrt{\frac{2 \times 10}{(1.25 \times 10^3)[(0.1)^4 - (0.04)^4]}}$$

$$= 6.4 \times 10^{-4} \text{ m}^3 \text{s}^{-1}$$

240 (b)

When life is accelerated downwards, the observed weight of body in a lift decreases. Hence, to counter balance the upward pull due to surface tension on the liquid meniscus, the height through which the liquid rises must increase

241 (a)

Liquid flows, from high pressure to low pressure. Hence, pressure of liquid in bigger diameter portion of tube is greater than in small diameter portion of tube

242 (d)

Given 
$$A = 0.5 \times 10^6 mm^2$$
;  $V = 200 \times 10^3 mm^3$   
 $\frac{dV}{dt} = \frac{d(Al)}{dt} = A\frac{dl}{dt} = Av$   
 $v = \frac{1}{A} \left(\frac{dV}{dt}\right) = \frac{1}{0.5 \times 10^6} (200 \times 10^3) \Rightarrow v$ 

243 (d)

Let depth of lake is x cm.

$$\therefore p_1 V_1 = p_2 V_2$$

$$(pdg + xdg)\left(\frac{4}{3}\pi r^3\right) = pdg\left[\frac{4}{3}\pi (2r)^3\right]$$

$$(p+x)r^3 = p(8r^3)$$

$$x = 8p - p$$

$$x = 7p$$

Velocity of efflux  $v = \sqrt{2gh}$ 



But 
$$h\rho g = p$$
  

$$\therefore hg = \frac{p}{\rho}$$

$$\therefore v = \sqrt{\frac{2p}{\rho}}$$

$$= \sqrt{\frac{2 \times 6.4 \times 10^5}{800}} \,\mathrm{ms^{-1}}$$

#### 245 (d)

Bernoulli's theorem is a form of conversion of energy, hence we have

$$H_0 + h\rho g = H_0 + \frac{1}{2}\rho v^2$$



When vessel is accelerated down with an acceleration g (free fall), then pseudo acceleration g will act vertically upwards and effective value of g is zero. Hence, water will not flow.

## 246 (c)

Work done = Change in surface energy

$$w = 2T \times 4\pi (R_2^2 - R_1^2)$$

$$=2\times 0.03\times 4\pi[(5)^2-(3)^2]\times 10^{-4}$$

$$= 0.4\pi \, \text{mJ}$$

#### 247 (b)

Work done against air friction is the average gain in KE before attaining the terminal velocity

$$W_1 = \frac{0 + \frac{1}{2}mv_{\text{ter}}^2}{2} = \frac{1}{4}mv_{\text{ter}}^2$$

Work done against air friction after attaining terminal velocity, velocity is

$$W_2 = \frac{1}{2}mv_{\text{max}}^2$$

$$W_2 > W_1$$

 $V = \frac{\pi p r^4}{8nl} : V \propto P r^4 \quad [\eta \text{ and } l \text{ are connected}]$ 

Let A be the area of cross-section of the cylindrical vessel and x cm be the height of mercury in vessel. The height of water in the vessel =  $(29.2 \times x)$  cm

As per question

$$Ax \times 13.6 = (29.2 - x) \times 1 \text{ or } x = 2 \text{ cm}$$

- : Height of water column
- = (29.2 2) = 27.2 cm
- : Pressure of the liquids at the bottom
- = 27.2 cm of water column +2 cm of Hg column
- $=\frac{27.2}{13.6}$  of Hg column +2 cm of Hg column
- = 4 cm of Hg column

### 250 (d)

Pressure at depth  $h = p_a + \rho g h$ where  $p_a$  is atmospheric pressure

$$= 1.01 \times 10^5 \text{ Nm}^2$$

$$p_{\text{total}} = 1.01 \times 10^5 + 10^3 \times 10 \times 20$$

$$= 3.01 \times 10^5 \text{ Pa} = 3 \text{ atm}$$

## 251 (c)

When jar is placed in vacuum, the liquid level rises up to the top of jar. The force exerted by liquid on the base of jar = force due to vertical column of liquid of height (a + b + c)+ vertical downward



Component of thrust F acting on the portion BC of

$$= (a+b+c)\rho g \times \pi R^2 + F \sin 60^\circ$$

= greater than 
$$(a + b + c)\rho g \times \pi R^2$$

From Bernoulli's equation, the sum of all forms of energy in a fluid flowing along an enclosed path (a streamline) is the same at any two points in the path. Therefore,

$$p + \frac{1}{2}\rho v_1^2 = p' + \frac{1}{2}\rho v_2^2$$

Given, 
$$v_2 = 2v$$
,  $v_1 = v$   

$$\therefore p + \frac{1}{2}\rho v^2 = p' + \frac{1}{2}\rho(2v)^2$$

$$\Rightarrow p' = p - \frac{3}{2}\rho v^2$$

### 253 (c)

According to Bernoulli's equation for horizontal





254 (c)

If a sphere of mass M and radius R is dropped in a liquid, its weight  $Mg\left(=\frac{4}{3}\pi\,R^3\rho\mathrm{g}\right)$  acts vertically downwards. While upthrust  $\frac{4}{3}\,\pi\,R^3\sigma\mathrm{g}$  and viscous force  $6\pi\eta Rv$  acts vertically upwards. Initially the body will be accelerated down. At a certain instant when viscous force F will balance the net downward force, acceleration will become zero and the body will fall with constant velocity.



255 (c)

Force exerted by the liquid on the base of the vessel is F = mg

Here, 
$$m_A = m_B = M_C$$
  
 $\therefore F_A = F_B = F_C$ 

256 (a)

Accordingly  $\frac{4T}{r_1} = 3 \times \frac{4T}{r_2} \implies \frac{r_1}{r_2} = \frac{1}{3}$ 

Ratio of surface areas

$$\frac{A_1}{A_2} = \frac{4\pi r_1^2}{4\pi r_2^2} = \frac{1}{9}$$

257 **(b)** 

Let specific gravities of concrete and saw dust are  $ho_1$  and  $ho_2$  respectively

According to principle of floatation weight of whole sphere = upthrust on the sphere

$$\frac{4}{3}\pi(R^3 - r^3)\rho_1 g + \frac{4}{3}\pi r^3 \rho_2 g = \frac{4}{3}\pi R^3 \times 1 \times g$$

$$\Rightarrow R^3\rho_1 - r^3\rho_1 + r^3\rho_2 = R^3$$

$$\Rightarrow R^3(\rho_1 - 1) = r^3(\rho_1 - \rho_2) \Rightarrow \frac{R^3}{r^3} = \frac{\rho_1 - \rho_2}{\rho_1 - 1}$$

$$\Rightarrow \frac{R^3 - r^3}{r^3} = \frac{\rho_1 - \rho_2 - \rho_1 + 1}{\rho_1 - 1}$$

$$\Rightarrow \frac{(R^3 - r^3)\rho_1}{r^3\rho_2} = \left(\frac{1 - \rho_2}{\rho_1 - 1}\right)\frac{\rho_1}{\rho_2}$$

$$\Rightarrow \frac{\text{Mass of concrete}}{\text{Mass of saw dust}} = \left(\frac{1 - 0.3}{2.4 - 1}\right) \times \frac{2.4}{0.3} = 4$$

258 (d)

Application of Bernoulli's theorem

259 (c)

Total weight in right hand = 10 + 1 = 11 kg

260 (c)

Since cross-sectional area is halved, therefore, velocity is doubled.

Now, 
$$p_1 = 2000 \text{Pa}, v_1 = 1 \text{ms}^{-1}$$
  
 $p_2 = ?, v_2 = 2 \text{ ms}^{-1}$   
Again  $p_2 + \frac{1}{2} \times 1000 \times 2 \times 2$   
 $= 2000 + \frac{1}{2} \times 1000 \times 1 \times 1$   
or  $p_2 = 2000 + 500(1 - 4) = 500 \text{Pa}$ 

262 (d)

Terminal velocity,  $v_T \propto r^2$ 

or 
$$\frac{v_{T_1}}{v_{T_2}} = \frac{r_1}{r_2^2}$$
  
 $\therefore \sqrt{\frac{9}{4}} = \frac{r_1}{r_{20}}$   
or  $\frac{r_1}{r_2} = \frac{3}{2}$   
 $\therefore v = \frac{4}{3}\pi r^3$   
or  $\frac{v_1}{v_2} = \frac{r_1^3}{r_2^3} = \frac{27}{8}$ 

263 **(b)** 

By Pascal's law  $\frac{F}{A} = \frac{f}{a}$ or  $f = \frac{Fa}{A} = \frac{100g \times (\pi r)^2}{(\pi \times 4r)^2}$ 

Velocity 
$$v = \frac{2}{9} \frac{(\rho - \sigma)r^2g}{\eta}$$
  
 $\therefore v \propto (\rho - \sigma)$ 

$$v \propto (\rho - \sigma)$$

$$\frac{v_1}{v_2} = \frac{(\rho_1 - \sigma)}{(\rho_2 - \sigma)} = 0.1 \text{m}^{-1}$$

#### 265 (d)

Let radii of two soap bubble are a and b respectively and radius of single larger bubble is c

As excess pressure for a soap bubble is  $\frac{4T}{r}$  and external pressure p

$$p_i = p + \frac{4T}{r}$$

So, 
$$p_a = p + \frac{4T}{a}$$
,  $p_b = p + \frac{4T}{b}$ 

and 
$$p_c$$

$$=p+\frac{4T}{c}$$

and 
$$V_a = \frac{4}{3}\pi a^3$$
,  $V_b = \frac{4}{3}\pi b^3$ 

and 
$$V_c$$

$$=\frac{4}{3}\pi c^3$$

....(ii

Now as mass is conserved.

$$\mu_a + \mu_b = \mu_c$$

$$ie, \frac{p_a V_a}{R T_a} + \frac{p_b V_b}{R T_b} + \frac{p_c V_c}{R T_c} \qquad (as \ p \ V = \mu R \ T)$$

As temperature is constant,

$$ie, T_a = T_b = T_c$$

So, 
$$p_a V_a + p_b V_b = p_c V_c$$

Which in the light of Eqs. (i) and (ii) becomes,

$$\left(p + \frac{4T}{a}\right) \left(\frac{4}{3}\pi a^3\right) + \left(p + \frac{4T}{b}\right) \left(\frac{4}{3}\pi b^3\right)$$

$$= \left(p + \frac{4T}{c}\right) \left(\frac{4}{3}\pi c^3\right)$$

ie, 
$$4T(a^2 + b^2 - c^2)$$
  
=  $p(c^3 - a^3)$ 

$$-b^{3}$$
)

... ... (iii)

Now, 
$$V = \frac{4}{3}\pi(a^3 + b^3 - c^3)$$

and 
$$A = 4\pi(a^2 + b^2 - c^2)$$

$$\therefore \frac{TA}{\pi} = -\frac{3}{4\pi} = Vp$$

or 
$$4TA + 3pV = 0$$

### 266 (d)

Increase in surface energy = surface tension  $\times$ increase in surface area

$$= S(1000 \times 4\pi r^2 - 4\pi R^2)$$

$$\left(100 \times \frac{4}{3}\pi r^3 = \frac{4}{3}R^3 \text{ or } r = R/10\right)$$

$$= S \times 4\pi \left(1000 \times \frac{R^2}{100} - R^2\right) = 36 \pi R^2 S$$

$$h \rho g = \frac{2S}{r} \text{ or } h = \frac{2S}{r \rho g}$$

$$= \frac{2 \times 75 \times 10^{-3}}{\left(\frac{1}{2} \times 10^{-3}\right) \times 10^{3} \times 10} = 0.03 \text{ m} = 3 \text{ cm}$$

Surface energy is related to the surface tension by the relation

$$U = TdA$$

Given, 
$$T = 5 \text{ Nm}^{-1}$$

$$dA = 2A$$

$$2 \times 0.02 = 0.04 \text{ m}^2$$

$$\therefore U = 5 \times 0.04$$

$$= 0.20 I = 2 \times 10^{-1} I$$

# 269 (c)

Let p be the atmospheric pressure,  $\rho$  the density of the liquid and v the velocity of the efflux of the liquid coming out from the orifice.



From Bernoulli's theorem,

$$p+0+\rho \mathrm{g} H=p+\frac{1}{2}\rho v^2+\rho \mathrm{g} (H-h)$$

$$\Rightarrow \frac{1}{2}\rho v = \rho g h$$

$$\Rightarrow v = \sqrt{2gh}$$

## 270 (b)

Excess the pressure inside the bubble is p = 4T/r. So, smaller is the radius r, the larger is the excess of pressure p. It means, the pressure of air is more in bubble A than in bubble B. So, the air will go from bubble A to bubble B will grow more until they collapse.

### 271 (b)

If spherical body of radius a is dropped in a viscous fluid, it is first accelerated and then its acceleration becomes zero and it attains a constant velocity called terminal velocity.

Terminal velocity, 
$$v = \frac{2}{9} \frac{a^2(\rho - \sigma)g}{\eta}$$

where  $\rho$  is the density of the body, $\sigma$  is the density of fluid and n is coefficient of viscosity.

#### 272 (b)

Net force = Average pressure  $\times$  Area - T  $\times$  2R

$$\left(P_0 + \rho g \frac{h}{2}\right) (2Rh) - T2R$$



$$\Rightarrow |2P_0Rh + R\rho gh^2 - 2RT|$$

273 (a)

Let *x* be the portion of exposed height of the body of lengthl, area of cross-section A. As the body is floating, so

$$A l \rho g = A(l-x)3\rho g$$
  
or  $l = 3l - 3x$   
or  $x = 2l/3$ 

or 
$$\frac{x}{l} = \frac{2}{3}$$

274 (d)

Let V be the volume of wooden ball. The mass of ball is  $m = V \rho$ 

Upward acceleration,

$$a = \frac{\text{upward thrust} - \text{weight of ball}}{\text{mass of ball}}$$
$$= \frac{V \rho_0 g - V \rho g}{V \rho} = \frac{(\rho_0 - \rho)g}{\rho}$$

If v is the velocity of ball on reaching the surface after being released at depth h is

$$v = \sqrt{2as} = \left[2\left(\frac{\rho_0 - \rho}{\rho}\right)gh\right]^{1/2}$$

If h' is the vertical distance reached by ball above the surface of water, then

$$h' = \frac{v^2}{2g} = \frac{2(\rho_0 - \rho)}{\rho} gh \times \frac{1}{2g}$$
$$= \left(\frac{\rho_0 - \rho}{\rho}\right) h = (\rho_0/\rho)$$

$$\frac{P_1 - P_2}{\rho g} = \frac{v^2}{2g} \Rightarrow \frac{4.5 \times 10^5 - 4 \times 10^5}{10^3 \times g} = \frac{v^2}{2g} \therefore v$$
$$= 10m/s$$

276 (c)

$$h = \frac{2S \cos \theta}{r \rho g} \text{ or } S = \frac{h r \rho g}{2 \cos \theta} \text{ or } S \propto \frac{h \rho}{\cos \theta}$$

$$\frac{S_W}{S_{Hg}} = \frac{h_1}{h_2} \times \frac{\cos \theta_2}{\cos \theta_1} \times \frac{1}{13.6}$$

$$= \frac{10}{(-3.42)} \times \frac{\cos 135^\circ}{\cos 0^\circ} = \times \frac{1}{13.6}$$

$$= \frac{10}{3.42} \times \frac{0.707}{13.6} = \frac{1}{6.5}$$

Volume remains constant after coalescing.

$$\frac{4}{3}\pi R^3 = 2 \times \frac{4}{3}\pi r^3$$

Where R is radius of bigger drop and r is radius of each smaller drop.

$$\therefore R = 2^{\frac{1}{3}}r$$

Now, surface energy per unit surface area is the surface tension.

So, surface energy,  $W = T\Delta A$ 

or 
$$W = 4\pi r^2 T$$

Therefore, surface energy of bigger drop

$$W_1 = 4\pi (2^{\frac{1}{3}}r)^2 T = (2^{\frac{2}{3}})4\pi r^2 T$$

Surface energy of smaller drop

$$W_2 = 4\pi r^2 T$$

Hence, required ratio

$$\frac{W_1}{W_2} = 2^{2/3} : 1$$

279 (b)

Viscosity in gases arises principally from the molecular diffusion that transports momentum between layers off flow. For gases viscosity increases at temperature increases, while in liquids the additional force between molecules become important, hence viscosity tends to fall as temperature increases.

280 (d)

$$Q = \frac{\pi p r^4}{8 \eta l}$$
 and  $Q_1 = \frac{\pi p (r/2)^4}{8 \eta (2l)} = \frac{Q}{32}$ 

281 (b)

Excess pressure

$$p = hdg + h'dg$$
$$\Rightarrow p = dg(h + h')$$

Where *h* is capillary rise = 
$$\frac{2T}{rdg}$$

$$= \frac{2 \times 7 \times 10^{-2}}{25 \times 10^{-5} \times 10^{3} \times 10} = 0.056 \text{ m}$$

$$\therefore p = 10^3 \times 10[0.056 + 0.01]$$

$$= 0.066 \times 10^4$$

$$= 0.0066 \times 10^5 \text{ Nm}^{-2}$$

282 (b)

Thrust on lamina = pressure at centroid  $\times$  Area  $= \frac{h\rho g}{3} \times A = \frac{1}{3}A\rho gh$ 

284 (a)

Excess pressure inside a bubble of radius  $R = \frac{2S}{R}$ where *S* is the surface tension of the liquid.

285 (d)

$$v \propto r^2$$

$$\frac{v_1}{v_2} = \frac{r_1^2}{r_2^2}$$

$$\begin{aligned} \frac{v_1}{v_2} &= \frac{r_1^2}{r_2^2} \\ \frac{10}{v_2} &= \frac{r^2}{8^{2/3}r^2} = \frac{1}{4} \end{aligned}$$

$$v_2 = 40 \, \text{cm/s}$$

287 (b)

When a number of small droplets coalesce to form a bigger drop surface energy is released because its surface area decreases.





### 288 (a)

Here, the free liquid surface between the plates will be cylindrical which is curved along one axis (parallel to the plates). The radius of curvature of meniscus, R = r/2. For cylindrical surface

$$p_0 - p = \frac{S}{R} = \frac{S}{r/2} = \frac{2S}{r}$$
$$\therefore p = p_0 - \frac{2S}{r}$$

#### 290 (c)

Water will not leak out from the hole if the weight of water in the water column is supported by the force due to surface tension.

Using the relation,

$$h = \frac{2T}{r \rho g}$$

$$= \frac{2 \times 7.5 \times 10^{-2}}{0.5 \times 10^{-3} \times 10^{3} \times 10}$$

$$= 3 \times 10^{-2} \text{ m} = 3 \text{ cm}$$

### 291 (c)

According to the Berboulli's theorem the total energy (pressure energy, potential energy and kinetic energy) of an incompressible and non viscous fluid in steady flow through a pipe remains constant throughout the flow.

ie, 
$$p + \rho g h + \frac{1}{2} \rho v^2 = \text{constant.}$$

So, it is clear that Bernouli's theorem is a consequence of the law of conservation of energy.

#### 292 (b)

Upthrust = weight of body

For 
$$A$$
,  $\frac{V_A}{2} \times \rho_W \times g = V_A \times \rho_A \times g \Rightarrow \rho_A = \frac{\rho_W}{2}$   
For  $B$ ,  $\frac{3}{4}V_B \times \rho_W \times g = V_B \times \rho_B \times g \Rightarrow \rho_B = \frac{3}{4}\rho_W$   
(Since 1/4 of volume of  $B$  is above the water surface)

 $\therefore \frac{\rho_A}{\rho_B} = \frac{\rho_W/2}{3/4 \, \rho_W} = \frac{2}{3}$ 

#### 293 (d)

Let R be the radius of the bigger drop, then Volume of bigger drop

= 2 × volume of small drop

$$\frac{4}{3}\pi R^3 = 2 \times \frac{4}{3}\pi r^3$$

$$R = 2^{\frac{1}{3}}r$$

Surface energy of bigger drop,

$$E = 4\pi R^2 T$$

$$= 4 \times 2^{\frac{2}{3}} \pi r^2 T$$

$$= 2^2 \pi r^2 T$$

## 294 (c)

Since, the bubbles coalesce in vacuum and there is no change in temperature, hence its surface energy does not change. This means that the surface area remains unchanged. Hence,

$$4 \pi a^2 + 4 \pi b^2 = 4 \pi R^2 \text{ or } R = \sqrt{a^2 + b^2}$$

## 295 (b)

For streamline flow, Reynold's number  $N_R \propto \frac{r \, \rho}{\eta}$  should be less. For less value of  $N_R$ , radius and density should be small and viscosity should be high

## 296 (b)

Let total volume of iceberg = V

Volume of visible part of iceberg=  $V_1$ 

 $\therefore$  volume of iceberg inside water =  $(V - V_1)$ 

Now, volume of water displaced by iceberg =  $(V - V_1)$ 

Let 
$$density of iceberg = d$$

and density of water = D

Then, applying law of floatation, at equilibrium, weight of iceberg = weight of displaced water

$$Vdg = (V - V_1)Dg$$

$$\Rightarrow \frac{V - V_1}{V} = \frac{d}{D}$$

$$\Rightarrow 1 - \frac{V_1}{V} = 1 - \frac{d}{D}$$

$$\frac{V_1}{V} = 1 - \frac{d}{D}$$

: Percentage fraction of visible iceberg

$$\frac{V_1}{V} \times 100\% = \left(1 - \frac{d}{D}\right) \times 100\%$$
Here,  $d = 917 \text{ kgm}^{-3}$ ,  $D = 1024 \text{ kgm}^{-3}$ 

$$\therefore \frac{V_1}{V} \times 100\% = \left(1 - \frac{917}{1024}\right) \times 100\%$$

$$= \frac{10700}{1024}\% \approx 10\%$$

### 297 (c)

From Bernoulli's theorem,

$$\rho gh = \frac{1}{2}\rho(v_2^2 - v_1^2)$$

$$\Rightarrow gh = \frac{1}{2}v_1^2\left(\left(\frac{v_2}{v_1}\right)^2 - 1\right)$$

$$\Rightarrow gh = \frac{1}{2}v_1^2 \left( \left( \frac{A_1}{A_2} \right)^2 - 1 \right) \qquad \therefore (A_1v_1)$$
$$= A_2v_2$$

$$\implies \left(\frac{A_1}{A_2}\right)^2 = 1 + \frac{2hg}{v_1^2}$$



$$\Rightarrow \left(\frac{D_1}{D_2}\right)^4 = 1 + \frac{2hg}{v_1^2}$$

$$\Rightarrow D_2 = \frac{D_1}{\left(1 + \frac{2gh}{v_1^2}\right)^{1/4}}$$

$$= \frac{8 \times 10^{-3}}{\left(1 + \frac{2 \times 10 \times 0.2}{(0.4)^2}\right)^{1/4}} = 3.6 \times 10^3 \text{m}$$

298 (c)  

$$p = \frac{2S}{r} = \frac{2 \times 70 \times 10^{-3}}{10^{-3}} = 140 \text{ Nm}^{-2}$$

299 (a)

Volume of log of wood  $V = \frac{\text{mass}}{\text{density}} = \frac{120}{600} = 0.2m^3$ 

Let x weight that can be put on the log of wood So weight of the body =  $(120 + x) \times 10 N$ Weight of displaced liquid =  $V_{\sigma g} = 0.2 \times 10^3 \times 10 N$ 

The body will just sink in liquid if the weight of the body will be equal to the weight of displaced liquid

300 **(b)**

$$v \propto \frac{\rho - \rho_0}{\eta}$$

$$\frac{v_2}{v_1} = \frac{\rho - \rho_{02}}{\rho - \rho_{01}} \times \frac{\eta_1}{\eta_2}$$

$$= \frac{7.8 - 1.2}{7.8 - 1} \times \frac{8.5 \times 10^{-4} \times 10}{13.2}$$

$$= 6.25 \times 10^{-4} \text{ cm/s}$$

301 (a)

Density of the liquid  $d = \frac{1 - \frac{1}{3}}{1 - \frac{3}{4}} = \frac{\frac{2}{3}}{\frac{1}{4}} = \frac{8}{3}$ 

302 (c)

Volume of ice =  $\frac{M}{a}$ , volume of water =  $\frac{M}{a}$ 

 $\therefore \text{ Change in volume} = \frac{M}{\rho} - \frac{M}{\sigma} = M \left( \frac{1}{\rho} - \frac{1}{\sigma} \right)$ 

303 (c

Volume of ice =  $\frac{m}{x}$ 

 $\therefore \quad \text{Change in volume} = \frac{m}{y} - \frac{m}{x}$ 

304 (a)

Critical velocity  $v = N_R \frac{\eta}{\alpha r}$ 

$$\Rightarrow \frac{v_1}{v_2} = \frac{\eta_1}{\eta_2} \times \frac{\rho_2}{\rho_1} = \frac{52}{49} \times \frac{1}{13} = \frac{4}{49}$$

305 (c)

$$P_1V_1 = P_2V_2 \Rightarrow (P_0 + h\rho g)V = P_0 \times 3V$$

$$\Rightarrow h\rho g = 2P_0 \Rightarrow h = \frac{2 \times 75 \times 13.6 \times g}{\frac{13.6}{10} \times g} = 15 \text{ m}$$

306 (a)

According to principle of continuity,

Av = constant

or 
$$A_1 v_1 = A_2 v_2$$

or 
$$\pi r_1^2 v_1 = \pi r_2^2 v_2$$

Given, 
$$r_1 = \frac{4}{2}$$
 cm = 0.02 m,  
 $r_2 = \frac{2}{2}$  cm = 0.01m,

$$v_* = 3 \text{ms}^{-1}$$

$$\pi (0.02)^2 \times 3 = \pi (0.01)^2 v_2$$

or 
$$v_2 = \left(\frac{0.02}{0.01}\right)^2 \times 3 = 12 \text{ ms}^{-1}$$

307 (a)

If l and r be the length and radius of the tube and p the pressure difference, then from Poiseuille's formula, volume of liquid flowing per second is given by

$$Q = \frac{\pi \, pr^4}{8\eta l}$$

$$\therefore \text{ Fluid resistance} = \frac{8\eta l}{\pi r^4}$$

When capillaries are connected in series then equivalent fluid resistance is

$$R_{\rm eq} = R_1 + R_2$$

$$= \frac{8\eta l}{\pi \ pr^4} + \frac{8\eta(2L)}{\pi \ (2R)^4} = \frac{9}{8} \left( \frac{8\eta l}{\pi \ pr^4} \right)$$

$$\therefore \text{ Net rate of flow} = \frac{p}{R_{eq}} = \frac{p}{\frac{9}{9} \left(\frac{8\eta l}{\pi rr^4}\right)} = \frac{8}{9}$$

308 (c)

From the equation of continuity, the amount of mass that flows past any cross-section of a pipe has to be the same as the amount of mass that flows past any other cross-section.

$$ie, m_1 = m_2$$

$$\Rightarrow \rho_1 A_1 v_1 = \rho_2 A_2 v_2$$



Given 
$$\rho_1 = \rho_2 \ A_2 = \frac{A_1}{2}$$

$$A_1 v_1 = \frac{A_1}{2} v_2$$

$$\Rightarrow v_2 = 2v_1$$

Here,  $p_1 = 2$  cm of Hg



$$= 2 \times 13.6 \times 980$$

$$= 2.666 \times 10^4 \text{dyne cm}^{-2}$$

$$v_1 = 32 \text{ cms}^{-1}$$
,  $v_2 = 65 \text{cms}^{-1}$ 

For a horizontal pipe, according to Bernoulli's

$$\frac{p_1}{\rho} + \frac{1}{2}v_1^2 = \frac{p_2}{\rho} + \frac{1}{2}v_2^2$$

or 
$$p_2 = p_1 + \frac{1}{2}\rho(v_1^2 - v_2^2)$$

or 
$$p_2 = 2.666 \times 10^4 + \frac{1}{2} \times [(32)^2 - (65^2)]$$

$$= 2.666 \times 10^4 - 0.16 \times 10^4$$

$$=\frac{2.506 \times 10^4}{13.6 \times 980} = 1.88 \text{ cm of Hg}$$

## 311 (c)

Excess of pressure inside a soap bubble

$$p = \frac{4T}{R}$$

or 
$$\frac{p_1}{p_2} = \frac{R_2}{R_1}$$

Given, 
$$p_1 = 3p_2$$

Given, 
$$p_1 = 3p_2$$
  
 $\therefore \frac{3p_2}{p_2} = \frac{R_2}{R_1}$ 

or 
$$\frac{R_1}{R_2} = \frac{1}{3}$$

Therefore, ratio of volume of bubbles

$$\frac{V_1}{V_2} = \frac{\frac{4}{3}\pi R_1^3}{\frac{4}{3}\pi R_2^3}$$

$$R^{3}$$
 (1)

$$=\frac{R_1^3}{R_2^3}=\left(\frac{1}{3}\right)^3=\frac{1}{27}$$

$$V_1: V_2 = 1:27$$

### 313 (d)

Terminal velocity,  $v = \frac{2r^2(\rho - \rho_0)g}{9n}$ 

Or 
$$\frac{v}{r^2} = \frac{2(\rho - \rho_0)g}{9n} = \text{constant}$$

Velocity head,  $h = \frac{1}{2} \frac{v^2}{g}$  or  $v = \sqrt{2gh}$ 

$$=\sqrt{2\times10\times0.1}=1.4~{\rm ms^{-1}}$$

# 315 (c)

Given, velocity of river,  $(v) = 2 \text{ms}^{-1}$ 

Density of water,  $\rho = 1.2 \, \text{gcc}^{-1}$ 

Mass of each cubic metre,

$$m = \frac{1.2 \times 10^{-3}}{(10^{-2})^3} = 1.2 \times 10^3 \text{kg}$$

$$\therefore \text{ kinetic energy} = \frac{1}{2}mv^2$$

$$=\frac{1}{2}\times 1.2\times 10^3\times (2)^2$$

$$= 2.4 \times 10^3 \text{ J} = 2.4 \text{kJ}$$

## 316 (a)

When air stream is produced in between two suspended balls, the pressure there becomes less than the pressure on the opposite faces of the balls. Due to which the balls are pushed towards each other

### 317 (a)

Volume of liquid flowing per second through each of the two tubes in series will be the same. So

$$V = \frac{\pi p_1 R^4}{8 \eta L} = \frac{\pi p_2 (R/2)^4}{8 \eta (L/2)}$$
 or  $\frac{p_1}{p_2} = \frac{1}{4}$ 

### 318 (c)

Pressure at neck of bottle

$$p_1 = \frac{F_1}{A_1} = \frac{F_1}{\pi \, r_1^2}$$

Similarly, pressure at bottom of bottle

$$p_2 = \frac{F_2}{A_2} = \frac{F_2}{\pi \ r_2^2}$$

According to Pascal's law, liquids transmits pressure equal in all directions.

$$\therefore \frac{F_2}{A_2} = \frac{F_2}{\pi r_2^2} \text{ or } F_2 = F_1 \times \left(\frac{r_2}{r_1}\right)^2$$

$$=12 \times \left(\frac{15}{3}\right)^2 = 12 \times 25 = 300$$
N

### 319 (d)

Upthrust - weight of body = apparent weight VDg - Vdg = Vda

Where  $a = \text{retardation of body} : a = \left(\frac{D-d}{d}\right)g$ 

The velocity gained after fall from h height in air,  $v = \sqrt{2gh}$ 

Hence, time to come in rest

$$t = \frac{v}{a} = \frac{\sqrt{2gh} \times d}{(D - d)g} = \sqrt{\frac{2h}{g}} \times \frac{d}{(D - d)}$$

#### 320 (d)

Due to its adhesive nature, mercury depresses below the free surface of the liquid at the point of contact in the container (as shown in figure) when the capillary tube is dipped in it.



$$v = \frac{2r^2 \rho g}{9\eta} r \Rightarrow v \propto r^2 \rho$$





But mass,  $m = \frac{4}{3}\pi r^3 \rho$  or  $\rho \propto m/r^3$ ; Hence,  $v \propto r^2(m/r^3)$  or  $v \propto m/r$ 

#### 322 (a)

Pressure is independent of area of cross-section

### 324 (a)

If h is the initial height of liquid in drum above the  $\begin{vmatrix} 329 \end{vmatrix}$ small opening, then velocity of efflux,  $v = \sqrt{2 \text{ gh}}$ . As the water drains out, h decreases, hence vdecreases. This reduces the rate of drainage of water. Due to which, as the drainage continues, a longer time is required to drain out the same volume of water

## 325 (b)

Ice is lighter than water. When ice melts, the volume occupied by water is less than that of ice. Due to which the level of water go down

#### 326 (a)

Volume of cube submerged

Total volume
$$= \frac{\text{Density of cube material}}{\text{Density of water}}$$

$$\Rightarrow \frac{10-4}{10} = \frac{d}{1}$$

$$\therefore d = \frac{6}{10} = 0.6 \text{ g cm}^{-3}$$

Let *h* be the desired height of liquid in cylinder for which the force on the bottom and sides of the vessel is equal

Force on bottom =  $\rho$  g $h \times \pi R^2$ Force on the walls of vessel  $= \rho g(h/2) \times 2\pi R h$  $= \rho g \pi h^2 R = \rho g h \pi R h \text{ or } R = h$ 

## 328 (b)

The streamlines of air for a ball which is moving and spinning at the same time is as shown in figure below. The ball is moving forward and relative to it the air is moving backwards. Therefore, the velocity of air above the ball relative to it is larger and below it is smaller. The streamlines thus get crowded above and rarified below. This difference in the velocities of air results in the pressure difference between the lower and upper faces and there is a net upward force on the ball. This dynamic lift due to spinning is known as magnus effect



Weight the body = Weight of liquids displaced  $V \times d \times g = \frac{V}{2} \times 0.8 \times g + \frac{V}{2} \times 13.6 \times g$ 

$$d = \frac{0.8}{2} + \frac{13.6}{2} = 0.4 + 6.8$$
$$= 7.2 \text{ g cm}^{-3}$$

### 330 (b)

There will be no over flowing of liquid in a tube of insufficient height but there will be adjustment of the radius of curvature of meniscus so that hR = afinite constant

## 331 (c)

Let k be the spring constant of spring and it gets compressed by length *x* in equilibrium position. Let m be the mass of the block and F be the upward thrust of water on block. When the block is at rest.

$$w = kx + F$$
 or  $w - F = kx$ 



When the vessel moves downwards with acceleration a (< g) the effective downward acceleration = g - a. Now upthrust is reduced say it becomes F"

Where 
$$F' = \frac{F}{g}(g - a)$$

In figure, then

$$w - kx' - F' = ma$$

or 
$$w - kx' - \left(\frac{g-a}{g}\right)F = \frac{wa}{g}$$

or 
$$(w-F) - kx' + \frac{a}{g}F = \frac{wa}{g}$$

or 
$$kx - kx' + \frac{a}{g}F = \frac{wa}{g}$$

or 
$$x' = x + (F - w) \frac{a}{gk}$$

hence, the spring length will increase

## 332 (b)

According to equation of continuity,

: For tube, 
$$(8 \times 10^{-4}) \times \left(\frac{0.15}{60}\right) = a_1 v_1$$





For holes  $(40 \times 10^{-8}) \times v = a_2 v_2$ 

$$\therefore a_1 v_2 = a_2 v_1$$

$$\therefore 40 \times 10^{-8} \times v = \frac{8 \times 10^{-4} \times 0.15}{60}$$

$$\Rightarrow v = \frac{8 \times 10^{-4} \times 0.15}{40 \times 10^{-8} \times 60} = 5 \text{ms}^{-1}$$

334 (d)

The rate of flow of liquid (*V*) through capillary tube is

$$V = \frac{\pi p r^4}{8\eta l} = p\left(\frac{\pi r^4}{8\eta l}\right) = \frac{p}{R} = \frac{\text{pressure difference}}{\text{resistance}}$$

Where, 
$$R = \frac{8\eta hl}{\pi r^4}$$

When two tubes are in series

Total resistance  $R = R_1 + R_2$ 

Rate of flow of liquid,  $V' = \frac{p}{R_1 + R_2}$ 

$$= \frac{p}{\frac{8\eta}{\pi} \left[ \frac{l_1}{r_1^4} + \frac{l_2}{r_2^4} \right]} = \frac{\pi p}{8\eta} \left[ \frac{l_1}{r_1^4} + \frac{l_2}{r_2^4} \right]^{-1}$$

335 (a)

For air,  $\eta \propto \sqrt{T}$ 

336 (b)

$$W = 2 \times T \times \Delta A$$

$$= 2 \times 72 \times (0.6 - 0.5) \times 10 = 144 \text{ erg}$$

337 (a)

The aerofils are so designed that

 $P_{upper \, side} < P_{lower \, side}$ 

So that the aerofils get a lifting force in upward direction. According to Bernoulli's theorem, where the pressure is large, the velocity will be minimum or *vice-versa* 

Thus,  $V_{upper \, side} > v_{lower \, side}$ 

338 (b)

Difference of pressure between sea level and the top of hill

$$\Delta P = (h_1 - h_2) \times \rho_{Hg} \times g = (75 - 50) \times 10^{-2} \times \rho_{Hg} \times g \text{ ...(i)}$$

and pressure difference due to h metre of air

$$\Delta P = h \times \rho_{air} \times g$$
 ...(ii)

By equating (i) and (ii) we get

$$h \times \rho_{air} \times g = (75 - 50) \times 10^{-2} \times \rho_{Hg} \times g$$

 $\therefore$  Height of the hill = 2.5 km

339 (a)

Given size of the plate =  $2m \times 5m$  and Greatest and least depths of the plate are 6m and 4m

We know that area of the plate  $A = 2 \times 3 = 6 \text{m}^2$ 

And depth of centre of the plate

$$x^- = \frac{6+4}{2} = 5 \text{ m}$$

: Total thrust on the plate

$$\rho = \rho_w g \vec{A}_x$$
  
= 10³ × 9.8 × 6 × 5  
= 294 × 10³ N

340 (c)

The velocity of flow will increases if cross-section decreases and vice - versa

ie, 
$$A_1v_1 = A_2v_2$$

or 
$$A_v = \text{constant}$$

Therefore, the rate of liquid flow will be greater at N than at M.

341 (b)

Work done = surface tension × increase in area

$$= 1.9 \times 10^{-2} \times (4\pi R^2) \times 2$$

$$= 1.9 \times 10^{-2} \times 4 \times \pi (1 \times 10^{-2})^2 \times 2$$

$$= 15.2 \times 10^{-6} \pi J$$

342 (c)

Let A = The area of cross section of the hole

v =Initial velocity of efflux

d = Density of water

Initial volume of water flowing out per second = Av

Initial mass of water flowing out per second = *Avd* 

Rate of change of momentum =  $Adv^2$ 

Initial downward force on the flowing out water  $= Adv^2$ 

So equal amount of reaction acts upwards on the cylinder

 $\therefore$  Initial upward reaction =  $Adv^2$  [As  $v = \sqrt{2gh}$ ]

 $\therefore$  Initial decrease in weight = Ad(2gh)

$$= 2Adgh = 2 \times (\frac{1}{4}) \times 1 \times 980 \times 25 = 12.5 gm$$

wt

343 (c)

Specific gravity of alloy =  $\frac{\text{Density of alloy}}{\text{Density of water}}$ 

Mass of alloy

 $= \frac{}{\text{Volume of alloy} \times \text{density of water}}$ 

$$= \frac{m_1 + m_2}{\left(\frac{m_1}{\rho_1} + \frac{m_2}{\rho_2}\right) \times \rho_w} = \frac{m_1 + m_2}{\frac{m_1}{\rho_1/\rho_w} + \frac{m_2}{\rho_2/\rho_w}} = \frac{m_1 + m_2}{\frac{m_1}{s_1} + \frac{m_2}{s_2}}$$

As specific gravity of substance

$$= \frac{\text{density of substance}}{\text{density of water}}$$







### 344 (d)

Surface tension of water decreases with rise in temperature

#### 345 (d)

Streamline flow is more likely for non-viscous and incompressible liquid. So low density and low viscosity is the correct answer.

#### 346 **(b)**

$$\frac{\sigma_L}{\sigma_W} = \frac{\text{Upthrust on body in liquid}}{\text{Upthrust on body in water}}$$
1.5  $x$ 

$$\frac{1.5}{1} = \frac{x}{(50 - 40)g}$$

$$\Rightarrow x = 15g$$

∴ Upthrust on body in liquid = 15g
 Weight on the body = 50g

Hence, body will weight (50 - 15) = 35 g in the liquid

## 347 (a)

Here 
$$v_1 = \sqrt{2g(h/2)} = \sqrt{gh}$$
 ...(i)

Using Bernoulli's theorem, we have

$$p_a + \rho \, gh + 2pg(h/2) = p_a + \frac{1}{2}(2\rho)v_2^2$$

Or 
$$v_2 = \sqrt{2gh}$$
 ...(ii)  

$$\therefore \frac{v_1}{v_2} = \frac{1}{\sqrt{2}}$$

### 348 (c)

Let *r* be the radius of one droplet.

Now, 
$$\frac{4}{3}\pi R^3 = 10^6 \times \frac{4}{3}\pi r^3$$
  
 $r = \frac{R}{100} = \frac{1}{100} \text{ cm} = 10^{-4} \text{ m}$   
 $A_i = 4\pi R^2$   
 $A_f = 10^6 \times 4\pi r^2$ 

Change in area,

$$\Delta A = A_f - A_i = 4\pi \times 99 \times 10^{-4} \text{ m}^2$$

Increase in surface energy

= 
$$S \Delta A = 32 \times 10^{-2} \times 4\pi \times 99 \times 10^{-4} \text{ J}$$
  
=  $3.98 \times 10^{-2} \text{ J}$ 

The increase in surface energy is on the expense of internal energy, so energy expended =  $3.98 \times 10^{-2}$  J

#### 350 (b)

Buoyant force = weight of the body in air - weight of the body in liquid

$$= 4 - 3 = 1 N$$

#### 351 (a)

The rise or fall of liquid in vertical capillary tubes is called capillary. Water in plant fibres rises due to same phenomenon.

## 352 (b)

Change in surface area

$$2 \times 4\pi [(D/2)^2 - (d/2)^2] = 2\pi (D^2 - d^2)$$

Work done = surface tension × change in area =  $S \times 2\pi(D^2 - d^2)$ 

#### 353 (d)

Since the tubes A and C are connected to a tube of same area of cross-section, and the liquid flowing there will have same velocity, hence the height of liquid in A and C will be same. Since tube B is connected to a tube of smaller area of cross-section, therefore the liquid is flowing faster in this tube and pressure there is less according to Bernoulli's theorem

#### 354 (a)

Fluid resistance is given by  $R = \frac{8\eta L}{\pi r^4}$ 

When two capillary tubes of same size are joined in parallel, then equivalent fluid resistance is

$$R_{eq} = R_1 + R_2 = \frac{8\eta L}{\pi R^4} + \frac{8\eta \times 2L}{\pi (2R)^4}$$

Equivalent resistance becomes  $\frac{9}{8}$  times so,

rate of flow will be  $\frac{8}{9}X$ .

## 355 (c)

Water rise to height  $h = \frac{2T}{\rho g r}$ 

Potential energy of water column

$$U = \frac{mgh}{2} = 2\pi T^2/\rho g$$

The work performed by force of surface tension is

$$W = 2\pi r T h = \frac{4\pi T^2}{\rho g}$$

From conversation of energy the heat evolved

$$Q = W - U = \frac{2\pi T^2}{\rho g}$$

#### 356 (d)

Using

Potential energy =  $mgh \Rightarrow 1 \times 10^6 = m \times 10 \times 10$  $m = 10^4 kg/sec$ 

#### 357 (a)

According to Stokes, when a spherical body falls through a viscous fluid, it experiences a viscous force. The magnitude of the viscous force increases with the increases in velocity of the body falling under the action of its weight. As a result, the viscous force soon balance the driving force (weight of the body) and the body starts





moving with constant velocity, known as its terminal velocity.

#### 358 (c)

Velocity of water 0.15 m below the tap is given by  $v_2^2 = v_1^2 + 2gh$ =  $(1.0)^2 + 2 \times 10 \times 0.15$ 

$$\Rightarrow v_2 = 2 \text{ms}^{-1}$$

Now using equation of continuity, we have

$$a_1v_1=a_2v_2$$

$$a_{2=} \frac{a_1 v_1}{v_2} = \frac{10^{-4} \times 1}{2} = 5 \times 10^{-5} \text{m}^2$$

#### 359 (c)

Pressure at the bottom  $\rho=(h_1d_1+h_2d_2)$ g

$$= [250 \times 1 + 250 \times 0.85]g$$

$$= 250[1.85]g$$

#### 361 (b)

$$\eta = 0.07 \text{ kg m}^{-1}\text{s}^{-1}, dv = 1 \text{ ms}^{-1},$$

$$dx = 1 \text{ mm} = 1 \times 10^{-3} \text{ m}, A = 0.1 \text{m}^2$$

$$\therefore F = \eta A \frac{dv}{dx}$$

$$= 0.07 \times 0.1 \times \frac{1}{1 \times 10^{-3}} = 7N$$

## 362 (a)

In air, force of gravity acts on metals. Thus, these have their actual weight. Atomic weight of steel, *ie,* iron is 56 and that of aluminium is 27. Hence, it can be said that in air the weight of aluminium is half the weight of steel.

## 363 (b)

Using Bernoulli's theorem;

$$p + \frac{1}{2}pv^2 + \rho gh = p + \frac{1}{2}\rho v^2 + 0$$

Where v' is the velocity of the liquid at surface and v is the velocity of efflux. As

$$Av' = av \text{ or } v' = av/A$$

$$\therefore \frac{1}{2}\rho \left(\frac{av}{A}\right)^2 + \rho gh = \frac{1}{2}\rho v^2$$

Or 
$$v^2 - \frac{a^2v^2}{A^2} = 2gh$$

Or 
$$v = \sqrt{2gh} / \sqrt{\frac{A^2 - a^2}{A^2}} = \sqrt{2gh} \sqrt{\frac{A^2}{A^2 - a^2}}$$

#### 364 (a)

$$\eta = \frac{F}{A(dv/dy)}$$

$$\therefore \eta = \frac{10^{-2}}{(10^3 \times 10^{-4}) \left(\frac{6 \times 10^{-2}}{6 \times 10^{-3}}\right)}$$

$$=\frac{10^{-2}\times 6\times 10^{-3}}{10^{-1}\times 6\times 10^{-2}}$$

$$= 10^{-2} \text{Nsm}^2 = 0.1 \text{ poise}$$

#### 365 (a)

Velocity of efflux,  $v = \sqrt{2 gh}$ ;

Volume of liquid flowing out per sec

$$= v \times A = \sqrt{2 \text{ gh}} \times A$$

$$=\sqrt{2\times10\times5}\times(10\times10^{-4})=10^{-2}\text{m}^3\text{s}^{-1}$$

### 367 (a)

From law of floatation, we know that a body will float in a liquid, when its weight W is equal to the weight w of the liquid displaced by the immersed part of the body will be in equilibrium. A body will be in equilibrium only, if the resultant of all the forces and couples acting on the body is zero. If W and w act along different lines, they will from a couple which will tend to rotate the body. Thus, a floating body can be equilibrium, if no couple acts on it. It will be so, if the line of action of W and w is along the same vertical straight line.

Here, in both the situations, as the mass of floating block remains same, hence according to principle of floatation mass of volume of water displaced also remains same. Hence, water level will remain same in both the cases.

#### 368 (a)

Net force on the ball = downward force – upward force

$$=\frac{mg}{2}$$

$$\frac{3}{4}\pi r^{3}(\rho - \sigma)g - 6\pi\eta rv = \frac{mg}{2}$$

$$\frac{4}{3}\pi r^{3}(\rho - \sigma)g - 6\pi\eta rv = \frac{1}{2}(\frac{4}{3}\pi r^{3}\rho)g$$

$$r^2(\rho - \sigma)g - \frac{9}{2}\eta v = \frac{1}{2}r^2\rho g$$

$$\frac{9}{2}\eta v = r^2(\rho - \sigma)g - \frac{1}{2}r^2\rho g$$

$$=\frac{1}{2}r^2\rho g - r^2\sigma g$$

$$\frac{9}{2}\eta v = \frac{1}{2}r^2g(\rho - 2\sigma)$$

$$v = \frac{r^2 g}{9\eta} (\rho - 2\sigma)$$

#### 369 **(a**)

If r is the radius of small droplet and R is the radius of big drop, then according to question,

$$\frac{4}{3}\pi R^3 = 10^6 \times \frac{4}{3}\pi r^3 \text{ or } r = \frac{R}{100} = 0.01 R$$

$$= 0.01 \times 10^{-2} \text{m} = 10^{-4} \text{m}$$

Work done = surface tension  $\times$  increase in area

$$=35\times10^{-2}[10^{6}\times4\pi\times(10^{-4})^{2}-4\pi\times(10^{-3})^{2}]$$

$$= 4.35 \times 10^{-2} \text{ J}$$



370 (c)

 $P = h\rho g \ i. e.$  pressure does not depend upon the area of bottom surface

371 **(b)** 

Let  $V_0, V_t=$  Volume of the metal ball at 0°C and t°C respectively,  $\rho_0, p_t=$  density of alcohol at 0°C and t°C respectively. Then

$$W_1 = W_0 - V_0 \rho_0 \mathbf{g}$$

$$W_2 = W_t - V_t \rho_t g$$

Where 
$$V_t = V_0(1 + \gamma_m t)$$
 and  $\rho_t = \frac{\rho_0}{(1 + \gamma_0 t)} g =$ 

$$V_0 \rho_0 \frac{(1+\gamma_m l)}{(1+\gamma_a l)}$$

As  $\gamma_m < \gamma_a$ , hence upthrust at  $t^{\circ}$ C is less than at 0°C. It means upthrust has been decreased with increase in temperature. Due to which the  $W_2 > W_1$ 

372 (d)

If V is the volume of the body, its weight=  $V \rho_1 g$ . Velocity gained by body when it falls from a height  $h_1 = \sqrt{2gh_1}$  The weight of liquid displaced by the body as body starts immersing into the liquid =  $V \rho_2 g$ . The net retarding force on the body when it starts going in the liquid  $F = V(\rho_2 - \rho_1)g$ 

$$\therefore \text{ Retarding, } a = \frac{F}{V\rho_1} = \left[ \frac{V(\rho_2 - \rho_1)g}{V\rho_1} \right]$$

The time of immersion of the body is that time in which the velocity of the body becomes zero. Using the relation v = u + at, we have v = 0,  $u = \sqrt{2gh_v}$ 

$$a = -\frac{V(\rho_2 - \rho_1)g}{V \rho_1} = -\left(\frac{\rho_2 - \rho_1}{\rho_1}\right)g;$$

We have 
$$= 0 = \sqrt{2gh_1} - \left(\frac{\rho_2 - \rho_1}{\rho_1}\right)gt$$

Or 
$$t = \sqrt{\frac{2h_1}{g}} \times \left(\frac{\rho_1}{\rho_2 - \rho_1}\right)$$

373 (d)

Specific gravity =  $\frac{\text{weight of block in air}}{\text{loss in weight of block in liquid}}$ 

$$=\frac{60}{60-40}=\frac{60}{20}=3$$

374 (d)

In a turbulent flow, the velocity of the liquid in contact with the walls of the tube is equal is critical velocity.

375 (c)

$$Mass = Volume \times Density \Rightarrow M = \frac{4}{3}\pi r^3 \times \rho$$

As the density remains constant

$$M \propto r^3$$

$$\therefore \frac{r_1}{r_2} = \left(\frac{M_1}{M_2}\right)^{1/3} = \left(\frac{M}{8M}\right)^{1/3} = \frac{1}{2} ...(i)$$

Terminal velocity,  $v_T = \frac{2}{9} \frac{r^2(\rho - \sigma)g}{n}$ 

Where, r= radius of a spherical body ho= density of the material of body  $\sigma=$  coefficient of viscosity of the medium

As 
$$\rho$$
,  $\sigma$ ,  $\eta$  remain constant

$$\therefore v_T \propto r^2, \therefore \frac{v_{T_1}}{v_{T_2}} = \left(\frac{r_1}{r_2}\right)^2$$

$$\frac{v}{nv} = \left(\frac{r_1}{r_2}\right)^2 \text{ or } \frac{1}{n} = \left(\frac{1}{2}\right)^2 \quad \text{[Using (i)]}$$

376 **(c)** 

Vertical distance covered by water before striking ground= (H-h). Time taken is,  $t=\sqrt{2(H-h)g}$ ; Horizontal velocity of water coming out of hole at  $P, u=\sqrt{2gh}$ 

∴ Horizontal range

$$= ut = \sqrt{2gh} = \sqrt{2(H - g)/g}$$
$$= 2\sqrt{h(H - h)}$$

378 (a)

With the increase in temperature, the surface tension of liquid decreases and angle of angle also decreases

379 (d)

The upward thrust (*ie* buoyancy force) acts on the body and an equal and opposite force acts on the water so the weight will be the sum of the two = 600 + 40 = 640 g

380 (c

$$v = \frac{2}{9} \frac{r^2(\rho - \sigma)g}{\eta}$$

$$= \frac{2}{9} \times \frac{(20 \times 10^{-6})^2 (2000 - 1000) \times 9.8}{1.0 \times 10^{-3}}$$

$$= 8.7 \times 10^{-4} \text{ms}^{-1} = 0.87 \text{mm s}^{-1}$$

381 (a)

Excess pressure is given by  $p = \frac{4T}{r}$ 

$$\Rightarrow r = \frac{4T}{p}$$

$$\therefore \quad \frac{r_1}{r_2} = \frac{p_2}{p_1} = \frac{1.02}{1.01} = \frac{102}{101}$$

Ratio of volume's 
$$=$$
  $\frac{\frac{4}{3}\pi r_1^3}{\frac{4}{3}\pi r_2^3} = \frac{(102)^3}{(101)^3} \approx 2$ 

382 (c)

Apparent weight = actual weight - upthrust  $Vdg' = Vdg - V\rho g$ 

$$\Rightarrow g' = \left(\frac{d-\rho}{d}\right)g$$



383 (c)

Pressure on left end of horizontal tube,

$$p_1 = p_0 + h_1 \rho g$$

Pressure on right end of horizontal tube,

$$p_2 = p_0 + h_2 \rho \,\mathrm{g}$$

 $Asp_1 > p_2$ , so acceleration should be towards right hand side. If A is the area of cross-section of the tube in the horizontal portion of U-tube, then  $p_1 A - p_2 A = (l A \rho)a$ 

Or 
$$(h_1 - h_2)\rho$$
 g  $A = l A \rho a = \frac{g(h_1 - h_2)}{l}$ 

Retarding force acting on a ball falling in to a viscous fluid

$$F = 6\pi \eta R v$$

where R = radius of ball,

v = velocity of ball

and  $\eta = coefficient$  of viscosity

$$\therefore F \propto R \text{ and } F \propto v$$

Or in words, retarding force is directly proportional to both R and v.

387 (b)

Let A be the circular area over which the liquid wets the plate and *d* be the distance between two plates. Mass of liquid drop,  $m = Ad\rho$ . If S is the force of surface tension of water, then excess of pressure inside the liquid film in excess of atmospheric pressure is given by



$$p = \frac{S}{r} = \frac{S}{d/2} = \frac{2S}{d}$$

Force of attraction between the plates,

$$F = \frac{2S}{d} A \quad \left[ \because p = \frac{F}{A} \right]$$

$$\text{Or } F = \frac{2S}{\rho d^2} \times A \, \rho d = \frac{2S \, m}{\rho d^2}$$

$$= \frac{2 \times 0.07 \times (80 \times 10^{-6})}{10^3 \times (4 \times 10^{-8})} = 0.28 \, \text{N}$$

388 (c)

Figure shows the flow speed profile for laminar flow of a viscous fluid in a long cylindrical pipe. The speed is greatest along the axis and zero at the pipe walls,



389 (d)

Archimedes' upward thrust will be absent for a fluid, if there were no gravity.

390 (b)



Apply Bernoullis, theorem

$$p_1 + 0\rho gH = p_{2+} \frac{1}{2}\rho v^2 + \rho gH$$

$$p_1 - p_2 = \frac{1}{2}\rho v^2$$

$$3 \times 10^5 - 1 \times 10^5 = \frac{1}{2} \rho v^2$$

$$2\times 10^5 = \frac{1}{2}\rho v^2$$

$$2 \times 10^5 = \frac{1}{2} \times 10^3 \times v^2$$

$$v^2 = 400$$

$$v = \sqrt{400}$$

391 (c)

When there is equal level of liquid in two arms of U-tube, then height of liquid in each arm of Utube= $\frac{h_1+h_2}{2}$ . We may consider that a length  $h_1-\frac{(h_1+h_2)}{2}=\frac{h_1-h_2}{2}$  of the liquid has been transferred from left arm to right arm of U-tube. The mass of the liquid transferred from left arm to right arm of U-tube= $\left(\frac{h_1-h_2}{2}\right)A \rho$ , where A = area of crosssection of tube and  $\rho$  = density of liquid.

The decrease in height of this liquid =  $\left(\frac{n_1-n_2}{2}\right)$ Loss in potential energy of this liquid

$$= \left(\frac{h_1 - h_2}{2}\right)^2 A \rho g$$

The mass of the entire liquid in U-tube

$$= (h_1 + h_2 + h)\rho A$$

If this liquid moves with velocity v, then its

$$KE = \frac{1}{2}(h_1 + h_2 + h)\rho A v^2$$

Using law of conservation of energy, we gave

$$\frac{1}{2}(h_1 + h_2 + h)\rho A v^2 = \left(\frac{h_1 - h_2}{2}\right)^2 A \rho g$$
Or  $v = (h_1 - h_2) \sqrt{\frac{g}{2(h_1 + h_2 + h)}}$ 

$$F t = 2 SA \text{ or } F = \frac{2SA}{t} = \frac{2 SA^2}{At} = \frac{2 SA^2}{V}$$

$$F = \frac{2 \times 70 \times (40)^2}{0.05} = 44.8 \times 10^5 \text{ dyne}$$

$$= 44.8 \times 10^5 \times 10^5 \text{ dyne}$$

393 (a)



Work done = surface tension  $\times$  increase in surface area

$$= T(n 4 \pi r^2 - 4 \pi R^2)$$

394 (b)

Height,  $h \propto 1/R$ 

So 
$$h_1/h_2 = R_2/R_1 = 0.4/0.2 = 2$$

396 (a)

$$\cos 60^{\circ} = \frac{h}{l}$$

$$\Rightarrow l = \frac{h}{\cos 60^{\circ}} = \frac{76}{1/2}$$

$$l = 152 cm$$



397 (b)

Work done = surface tension  $\times$  increase in area  $W = \text{surface tension} \times [0.10 \times 0.006 - 0.10 \times 0.005] \times 2$ 

= 
$$7.2 \times 10^{-2} \times 0.10 \times 0.001 \times 2$$
  
=  $1.44 \times 10^{-5}$  J

398 (c)

$$\begin{aligned} P_1 V_1 &= P_2 V_2 \Rightarrow (P_0 + h \rho g) \times \frac{4}{3} \pi r^3 \\ &= P_0 \times \frac{4}{3} \pi (2r)^3 \end{aligned}$$

Where, h = depth of lake

$$\Rightarrow h\rho g = 7P_0 \Rightarrow h = 7 \times \frac{H\rho g}{\rho g} = 7H$$

399 (c)

Let the radius of curvature of the common internal film surface of the double bubble formed by two bubbles A and B be r.



Excess of pressure as compared to atmosphere inside *A* is

$$p_1 = \frac{4T}{r_1} = \frac{4T}{0.03}$$

Excess of pressure inside B is

$$p_2 = \frac{4T}{r_2} = \frac{4T}{0.04}$$

In the double bubble the pressure difference between *A* and *B* on either side of the common surface is

$$\frac{4T}{0.03} - \frac{4T}{0.04} = \frac{4T}{r}$$

$$\Rightarrow \frac{1}{0.03} - \frac{1}{0.04} = \frac{1}{r}$$

$$\Rightarrow r = \frac{0.03 \times 0.04}{0.01} = 0.12 \text{m}$$

400 (b)

Terminal velocity

$$v = \frac{2}{9} \frac{r^2(\rho - \sigma)g}{\eta}$$

 $v\alpha r^2$ 

$$\frac{v}{V} = \frac{r^2}{R^2} \Rightarrow V = \frac{vR^2}{r^2}$$

401 (b)

$$\Delta p_1 = \frac{4T}{r_1} \quad \text{and } \Delta p_2 = \frac{4T}{r_2}$$

 $r_1 < r_2$ 

$$\therefore \Delta p_1 > \Delta p_2$$

Air will flow from 1 to 2 and volume of bubble at end-1 will decreases.

402 (c)

Rate of flow of water through a capillary tube is

$$V = \frac{\pi R r^4}{8\eta l}$$

As P, n remain the same

$$\therefore \frac{V'}{V} = \frac{(2r)^4}{(r)^4} \times \frac{(l)}{(2l)} = \frac{16}{2} = 8 \Rightarrow V' = 8V$$

403 (a)

From the principle of continuity,

$$Av = constant$$

or 
$$A_1 v_1 = A_2 v_2$$

404 (b)

Although not given in the question, but we will have to assume that temperatures of A and B are same.



$$\frac{n_B}{n_A} = \frac{p_B V_B / RT}{p_A V_A / RT} = \frac{p_B V_B}{p_A V_A}$$

$$= \frac{p + 4s/r_A \times 4/3\pi(r_A)^3}{p + 4s/r_B \times 4/3\pi(r_B)^3}$$
(s = surface tension)

Substituting the values, we get  $\frac{n_B}{n_A} = 6$ 

405 (b)

Weight of body

= weight of water displaced



= weight of oil displaced

$$\Rightarrow \frac{2}{3}V\rho_w g = \frac{1}{2}V\rho_0 g$$

$$\Rightarrow \rho_0 = \frac{4}{3}\rho_w$$

$$\therefore \text{ Specific gravity of oil} = \frac{\rho_0}{\rho_W} = \frac{4}{3}$$

406 (a)

Given, 
$$6g = \frac{V}{3} \times 10^3 \times g$$
 ...(i)  
And  $(6 + m)g = V \times 10^3 \times g$  ...(ii)  
Dividing Eq.(ii) by Eq. (ii) by Eq. (i), we get
$$\frac{6 + m}{6} = 3$$
Or  $m = 18 - 6 = 12$  kg

407 (b)

Here, diameter  $D=1.25cm=1.25\times 10^{-2}m$ Density of water  $\rho=10^3kgm^{-3}$ Coefficient of viscosity  $\eta=10^{-3}$  Pas Rate of flow of water  $Q=5\times 10^{-5}m^3s^{-1}$ Reynold's number  $N_R=\frac{v\rho D}{n}$  ...(i)

Where v is the speed of flow

Rate of flow of water  $Q = \text{Area of cross section} \times \text{speed of flow}$ 

$$Q = \frac{\pi D^2}{4} \times v \Rightarrow v = \frac{4Q}{\pi D^2}$$

Substituting the value of v in eqn. (i), we get

$$N_R = \frac{4Q\rho D}{\pi D^2 \eta} = \frac{4Q\rho}{\pi D\eta}$$

Substituting the values, we get

$$N_R = \frac{4 \times 5 \times 10^{-5} \times 10^3}{\left(\frac{22}{7}\right) \times 1.25 \times 10^{-2} \times 10^{-3}} \approx 5100$$

For  $N_R > 3000$ , the flow is turbulent Hence, the flow of water is turbulent with Reynold's number 5100

408 (d)

Excess pressure inside a liquid drop

$$\Delta p = \frac{2T}{R}$$

Where *T* is surface tension and *R* is radius of liquid drop.

$$\therefore \frac{\Delta p_1}{\Delta p_2} = \frac{R_2}{R_1} = \frac{0.75}{0.50}$$

$$\Rightarrow \frac{\Delta p_1}{\Delta p_2} = \frac{3}{2}$$

409 (b)

In figure total force on the ring due to surface tension of soap film =  $(2\pi b) \times 2S \sin \theta$ Mass of air entering per second the bubble = volume × density =  $(A \ v)\rho = \pi \ b^2 \times v\rho$ Momentum of air energy per sec

$$= \pi b^2 v \rho \times v = \pi^2 b^2 v^2 \rho$$

The soap bubble will separate from the ring, when force of surface tension of ring is equal to the force

Or 
$$2\pi b \times 2S \times \frac{b}{R} = \pi b^2 v^2 \rho$$
 or  $R = \frac{4S}{\rho v^2}$ 

410 (d)

Rate of flow under a constant pressure head,

$$V = \frac{\pi p r^4}{8\eta l} \Rightarrow V \propto \frac{r^4}{l} \Rightarrow \frac{V_2}{V_1} = \left(\frac{r_2}{r_1}\right)^4 \times \frac{l_1}{l_2}$$
$$= \left(\frac{1}{2}\right)^4 \times \frac{1}{2}$$
$$\Rightarrow V_2 = \frac{V_1}{32} = \frac{V}{32}$$

412 (c)

$$A v = 2 A v' \text{ or } v' = v/2$$

For a horizontal pipe, according to Bernoull's theorem

$$p + \frac{1}{2}\rho v^{2} = P' + \frac{1}{2}\rho \left(\frac{v}{2}\right)^{2}$$

$$Or p' = p + \frac{1}{2}\rho v^{2} \left(1 - \frac{1}{4}\right)$$

$$= p + \frac{3}{8}\rho v^{2}$$

413 (d)



At the condition of equilibrium

Pressure at point A =Pressure at point B

$$P_A = P_B \Rightarrow 10 \times 1.3 \times g$$

$$= h \times 0.8 \times g + (10 - h) \times 13.6$$

$$\times g$$

By solving we get h = 9.6 cm

414 (b

$$\begin{split} P + 200 \times 10^{-3} \times 1000 \times 10 &= P_0 \quad ...(i) \\ P_0(500 - H) &= P. (300mm) \\ \Rightarrow P &= \frac{P_0(500 - H)mm}{300 \ mm} \quad ...(ii) \\ \text{From (i) and (ii)} \\ \frac{P_0(500 - H)}{300} + 2000 &= P_0 \\ &\Rightarrow \frac{10^5(500 - H)}{300} + 2000 = 10^5 \\ \Rightarrow 5 \times 10^7 - H \times 10^5 + 6 \times 10^5 &= 300 \times 10^5 \\ \Rightarrow H &= 206 \ mm, \text{ fall in height} = 6 \ mm \end{split}$$

415 (c)

A torque is acting on the wall of the dam trying to make it topple. The bottom is made very broad so that the dam will be stable



#### Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- Statement 1: Machine parts are jammed in winter
- Statement 2: The viscosity of lubricant used in machine parts increase at low temperature

2

- **Statement 1:** Hydrostatic pressure is a vector quantity
- **Statement 2:** Pressure is force divided by area, and force is a vector quantity

3

- Statement 1: A bubble comes from the bottom of a lake to the top
- Statement 2: Its radius increases

4

- **Statement 1:** The shape of automobile is so designed that its front resembles the stream line pattern of the fluid through which it moves
- **Statement 2:** The resistance offered by the fluid is maximum

5

- Statement 1: A thin stainless steel needle can lay floating on a still water surface
- **Statement 2:** Any object floats when the buoyancy force balances the weight of the object

6

**Statement 1:** A rain drop after falling through some height attains a constant velocity



	Statement 2:	At constant velocity, the viscous drag is just equal to its weight
7		
	Statement 1:	Sudden fall of pressure at a place indicates storm
	Statement 2:	Air flows from higher pressure to lower pressure
8		
	Statement 1:	For the flow to be streamline, value of critical velocity should be as low as possible
9	Statement 2:	Once the actual velocity of flow of a liquid becomes greater than the critical velocity, the flow becomes turbulent
	Statement 1:	Water flows faster than honey.
		The coefficient of viscocity of water is less than honey.
10		
	Statement 1:	When height of a tube is less than calculated height of liquid in the tube, the liquid does not overflow
	Statement 2:	The meniscus of liquid at the top of the tube becomes flat
11		
	Statement 1:	For a floating body to be in stable equilibrium, its centre of buoyancy must be located above the centre of gravity
	Statement 2:	The torque produced by the weight of the body and the upthrust will restore body back to its normal position, after the body is disturbed
12		
		A hydrogen filled balloon stops rising after it has attained a certain height in the sky
	Statement 2:	The atmospheric pressure decreases with height and becomes zero when maximum height is attained
13		
	Statement 1:	A man sitting in a boat which is floating on a pond. If the man drinks some water from the pond, the level of the water in the pond decreases
	Statement 2:	
14		
	Statement 1:	The stream of water flowing at high speed from a garden hose pipe tends to spread like a fountain when held vertically up, but tends to narrow down when held vertically down
	Statement 2:	In any steady flow of an incompressible fluid, the volume flow rate of the fluid remains
15		constant
	Statement 1:	A fluid flowing out of a small hole in a vessel apply a backward thrust on the vessel
	Statement 2:	According to equation of continuity, the product of area and velocity remain constant





16		
	Statement 1:	Terminal velocity is same as the critical velocity
	Statement 2:	The constant velocity of fall of a body through a viscous fluid is called terminal velocity
17		
	Statement 1:	Aeroplanes are made to run on the runway before take off, so that they acquire the necessary lift
	Statement 2:	According to Bernoulli's theorem, as velocity increases pressure decreases and viceversa
18		
	Statement 1:	Railway tracks are laid on small sized wooden sleepers
	Statement 2:	Small sized wooden sleepers are used so that rails exert more pressure on the railway track. Due to which does not leave the track
19		
	Statement 1:	The size of the needle of a syringe controls flow rate better than the thumb pressure exerted by a doctor while administering an injection
	Statement 2:	Flow rate is independent of pressure exerted by the thumb of the doctor
20		
	Statement 1:	The velocity of flow of a liquid is smaller where pressure is larger and $vice-versa$
	Statement 2:	This is in accordance with Bernoulli's theorem
21		
	Statement 1:	The shape of a liquid drop is spherical
	Statement 2:	The pressure inside the drop is greater than that outside
22		
	Statement 1:	The velocity flow of a liquid is smaller when pressure is larger and viceversa
	Statement 2:	According to Bernoulli's theorem, for the stream line flow of an ideal liquid, the total energy per unit mass remains constant
23		energy per unit mass remains constant
	Statement 1:	Paper pins are made to have pointed end
	Statement 2:	Because pointed pins have very small area due to which even for small applied force it exert large pressure on the surface
24		exercial ge pressure on the surface
	Statement 1:	The upper surface of wings of an aeroplane is made convex and the lower surface is made concave.
	Statement 2:	The air currents at the top have a smaller velocity and thus less pressure at the bottom
25		than at the top.

Statement 1: To empty an oil tank, two holes are made Statement 2: Oil will come out of two holes so it will be emptied faster 26 Statement 1: When two boats sail parallel in the same direction and close to each other, they are pulled towards each other **Statement 2:** The viscous drag on a spherical body moving with speed v is proportional to v27 Statement 1: A piece of ice floats in water, the level of water remains unchanged when the ice melts completely Statement 2: According to Archimede's principle, the loss in weight of the body in the liquid is equal to the weight of the liquid displaced by the immersed part of the body 28 **Statement 1:** The blood pressure in humans is greater at the feet than at the brain **Statement 2:** Pressure of liquid at any point is proportional to height, density of liquid and acceleration due to gravity 29 **Statement 1:** All the rain drop hit the surface of the earth with the same constant velocity. **Statement 2:** An object falling through a viscous medium eventually attains a terminal velocity.



# : ANSWER KEY:

1)	a	2)	d	3)	a	4)	c	21)	b	22)	a	23)	a	24)	c
5)	c	6)	a	7)	a	8)	d	25)	c	26)	b	27)	a	28)	a
						12)									
13)	d	14)	a	15)	a	16)	d								
17)	a	18)	d	19)	c	20)	a								



## : HINTS AND SOLUTIONS :

1 (a)

Viscosities of fluids are markedly dependent on temperature, increasing for gases and decreasing for liquids as the temperature is increased. Thus important consideration in the design of oils for engine lubrication is to reduce the temperature variation of viscosity as much as possible

2 (d)

Since due to applied force on liquid, the pressure is transmitted equally in all directions inside the liquid. That is why there is no fixed direction for the pressure due to liquid. Hence hydrostatic pressure is a scalar quantity

3 (a)

Since, the fluid move from higher pressure to lower pressure and in a fluid, the pressure increase with increase of depth. Hence, the pressure  $p_0$  will be lesser at the top than that at the bottom  $(p_0+h\rho g)$  So, the air bubble moves from the bottom to the top and does not move sideways, since the pressure is same at the same level. Further in coming from bottom to top the pressure decreases. According to Boyle's law pV= constant

Therefore, if pressure decreases the volume increases, it means radius increases

4 (c

When a body moves through a fluid, its motion is opposed by the force of fluid friction, which increases with the speed of the body. When cars and planes move through air, their motion is opposed by the air friction, which in turn, depend upon the shape of the body. It is due to this reason that the cars or planes are given such shape (known as stream lined shaped) so that air friction is minimum. Rather the movement of air

layers on the upper and lower side of stream line shape provides a lift which helps in increasing the speed of the car

5 (c)

Upward component of force due to surface tension and upthrust balances the weight

6 (a)

When a body falls through a viscous medium, finally, it attains terminal velocity. At this velocity, viscous force on rain drop balances the weight of the body

8 (d)

The moment actual velocity of flow of liquid exceeds critical velocity, the flow becomes turbulent. Hence for the flow to be streamline, the limiting value of critical velocity should be as large as possible

10 (a)

It can be shown that  $R \times h = \text{constant}$ , where R is radius of curvature of the meniscus of liquid in the tube. When height of tube is less, the meniscus becomes flatie,  $R = \infty$ . That is why liquid does not overflow

11 (a)

The stability of a floating body depends on the relative position of centre of gravity of a body, through which its weight acts and centre of gravity of the displaced water called centre of buoyancy through which the upthrust act

12 (b)

Both, assertion and reason are correct but reason is not the correct explanation of assertion

13 (d)



The level of water does not change. The reason is that on drinking the water (say m gm), the weight of man increases by m gm and hence water displaced by man increases by m gm, tending to raise the level. However, this much amount of water has already been consumed by the man. Therefore the level of pond remains same

#### 14 (a)

In steady flow of incompressible liquid rate of flow remains constant i.e.V = av = const. This is equation of continuity.

When pipe is placed vertically upward velocity of flow decreases with height so area of cross section increases and when pipe is placed vertically downward, velocity of flow increases in downward direction so area of cross section decreases *i. e.* it becomes narrower

## 15 (a)

Due to small area of cross-section of the hole, fluid flows out of the vessel with a large speed and thus the fluid possesses a large linear momentum. As no external forces acts on the system, in order to conserve linear momentum, the vessel acquires a velocity in backward direction or in other words a backward thrust results on the vessel

## 16 (d)

Terminal velocity and critical velocity are not same. Critical velocity is the velocity below which the flow of liquid is streamline

#### 17 (a)

According to Bernoulli's theorem, when wind velocity over the wings is larger than the wind velocity under the wings, pressure of wind over the wings becomes less than the pressure of wind under the wing's. This provides the necessary lift to the aeroplane

#### 18 (d)

Railways tracks are laid on large sized wooden sleepers. Due to large size sleepers the weight of rail act on the large area. Hence, the pressure exerted is reduced appreciably

#### 19 (c)

According to Bernoulli's equation

$$\frac{P}{\rho} + hg + \frac{1}{2}v^2 = \text{constant}$$

Thus, total energy of the injectable medicine depends upon second power of the velocity and first power of the pressure. It implies that total energy of the injectable medicine has greater dependence on its velocity. Therefore, a doctor adjust the flow of the medicine with the help of the size of the needle of the syringe  $(a_1v_1=a_2v_2)$  rather than the thumb pressure

### 20 (a)

Both the assertion and reason are true and the reason is correct explanation of the assertion

### 21 **(b)**

The shape of liquid drop is spherical due to surface tension of liquid

#### 22 (a)

According to Bernoulli's theorem,  $P + \frac{1}{2}\rho v^2 = a$  constant

*i.e.* when velocity is large, the pressure is less in a stream line flow of an ideal liquid through a horizontal tube

## 23 (a)

Smaller the area, larger the pressure exerted by a force

### 24 (c)

Working of an aeroplane is based on Bernoulli's principle. The wings of the aeroplane are the shape as shown in figure. Due to this specific shape of wings when the aeroplane runs, air passes at higher speed over it is compared to its lower surface. This difference of air speeds above the below the wings, in accordance, with Bernoulli's principle, creates a pressure differences, due to which an upward force called 'dynamic lift' acts on the plane.



25 **(c)** 



When two holes are made in the tin, air keeps on entering through the other hole. Due to this the pressure inside the tin does not become less than atmospheric pressure which happens only when one hole is made

28 **(a)** 

Height of the blood column in the human body is more at feet than at the brain. As  $P=h\rho g$ , therefore the blood exerts more pressure at the feet than at the brain



#### Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

 Column II shows five systems in which two objects are labelled as X and Y. Also in each case a point P is shown. Column I gives some statements about X and/or Y. Match these statements to the appropriate system(s) from Column II

Column-I

(p) Y

(A) The force exerted by X on Y has a magnitude Mg

Block Y of mass M left on a fixed inclined plane

**(B)** The gravitational potential energy of *X* is continuously increasing

X, slides on it with a constant velocity (q) P X

Two ring magnets Y and Z, each of mass M, are kept in frictionless vertical plastic stand so that they repel each other. Y rests on the base X and Z hangs in air in equilibrium. P is the topmost point of the stand on the common axis of the two rings. The whole system is in a lift that is going up with a constant velocity

Column-II

(C) Mechanical energy of the system X + Y is continuously decreasing



A pulley Y of mass  $m_0$  is fixed to a table through a clamp X. A block mass M hangs from a string that goes over the pulley and is fixed at point P of the table. The whole system is kept in a lift that is going down with a constant velocity



**(D)** The torque of the weight of *Y* about point *P* is (s) zero



A sphere *Y* of mass *M* is put in a nonviscous liquid *X* kept in a container at rest. The sphere is released and it moves down in the liquid



A sphere Y of mass M is falling with its terminal velocity in a viscous liquid X kept in a container

### CODES:

d)

q,t

	Α	В	C	D
a)	P,t	q,s,t	p,r,t	q,t
b)	q,s,t	p,t	q,t	p,r,t
c)	p.r.t	a.t	a.s.t	p.t

p,r,t

p,t

q,s,t



# : ANSWER KEY:

1) a



## : HINTS AND SOLUTIONS:

(a)



(A) Net force on Y due to X =

$$\sqrt{(Mg\cos\theta)^2 + (Mg\sin\theta)^2} = Mg$$

- (B) As the inclined is fixed. So, gravitational P.E. of X is constant
- (C) As K.E. is constant and P.E. of *Y* is decreasing. So mechanical energy of (X + Y) is decreasing



- (A) Force on Y due to X will be greater than Mg which is equal to (Mg + repulsion force)
- (B) As the system is moving up, P.E. of X is increasing
- (C) Mechanical energy of (X + Y) is increasing
- (D) Torque of the weight of Y about point P = 0



(A) Force on Y due to X = $\sqrt{[(M+m_0)g]^2+(Mg)^2}$ 

- (B) As the system moves down, gravitational P.E. of X decreases
- (C) As the system moves down, total mechanical energy of (X + Y) also decreases
- (D)  $\tau_P \neq 0$



- (A) Force on Y due to X = Buoyancy force which is less than Mg
- (B) As the sphere moves down, that volume of water comes up, so gravitational P.E. of X increases
- (C) As there is no non-conservation force, so total mechanical energy of X - Y remains conserved
- (D)  $\tau_P \neq 0$



- (A) As the sphere is moving with constant velocity  $B + f_v = Mg$
- So force on Y due to X is  $B + f_v = Mg$
- (B) As the sphere moves down, that volume of water comes up, so gravitational P.E. of X will
- (C) Increases in mechanical energy =  $W_{fr} = -ve$
- (D)  $\tau_P = 0$



